現(xiàn)有如下命題:
①過平面外一點(diǎn)有且只有一條直線與該平面垂直;
②過平面外一點(diǎn)有且只有一條直線與該平面平行;
③如果兩個(gè)平行平面和第三個(gè)平面相交,那么所得的兩條交線平行;
④如果兩個(gè)平面相互垂直,那么經(jīng)過第一個(gè)平面內(nèi)一點(diǎn)且垂直于第二個(gè)平面的直線必在第一個(gè)平面內(nèi).
則所有真命題的序號是________.

①③④
分析:①過平面外一點(diǎn)可作唯一一條直線與該平面垂直;②過平面外一點(diǎn)有無數(shù)條直線與該平面平行;③由平面與平面平行的性質(zhì)定理可得;④由平面與平面垂直的性質(zhì)定理可得.
解答:①過平面外一點(diǎn)有且只有一條直線與該平面垂直,正確;
②過平面外一點(diǎn)有且只有一條直線與該平面平行,錯(cuò)誤,應(yīng)該是有無數(shù)條直線與該平面平行;
③如果兩個(gè)平行平面和第三個(gè)平面相交,那么所得的兩條交線平行,正確,由平面與平面平行的性質(zhì)定理可得;
④如果兩個(gè)平面相互垂直,那么經(jīng)過第一個(gè)平面內(nèi)一點(diǎn)且垂直于第二個(gè)平面的直線必在第一個(gè)平面內(nèi),正確,
由平面與平面垂直的性質(zhì)定理可得.
故答案為:①③④
點(diǎn)評:本題考查命題真假的判斷,涉及空間中的線面的位置關(guān)系,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:①過平面外一點(diǎn)有無數(shù)條直線與這個(gè)平面平行;
②過直線外一點(diǎn)可以作無數(shù)個(gè)平面與已知直線平行;
③如果一個(gè)平面內(nèi)有兩條直線分別平行于另一個(gè)平面,那么這兩個(gè)平面平行;
④如果兩個(gè)平面同時(shí)和第三個(gè)平面相交,則它們的交線平行.   其中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鹽城一模)現(xiàn)有如下命題:
①過平面外一點(diǎn)有且只有一條直線與該平面垂直;
②過平面外一點(diǎn)有且只有一條直線與該平面平行;
③如果兩個(gè)平行平面和第三個(gè)平面相交,那么所得的兩條交線平行;
④如果兩個(gè)平面相互垂直,那么經(jīng)過第一個(gè)平面內(nèi)一點(diǎn)且垂直于第二個(gè)平面的直線必在第一個(gè)平面內(nèi).
則所有真命題的序號是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:鹽城一模 題型:填空題

現(xiàn)有如下命題:
①過平面外一點(diǎn)有且只有一條直線與該平面垂直;
②過平面外一點(diǎn)有且只有一條直線與該平面平行;
③如果兩個(gè)平行平面和第三個(gè)平面相交,那么所得的兩條交線平行;
④如果兩個(gè)平面相互垂直,那么經(jīng)過第一個(gè)平面內(nèi)一點(diǎn)且垂直于第二個(gè)平面的直線必在第一個(gè)平面內(nèi).
則所有真命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年江蘇省南京市、鹽城市高考數(shù)學(xué)一模試卷(解析版) 題型:填空題

現(xiàn)有如下命題:
①過平面外一點(diǎn)有且只有一條直線與該平面垂直;
②過平面外一點(diǎn)有且只有一條直線與該平面平行;
③如果兩個(gè)平行平面和第三個(gè)平面相交,那么所得的兩條交線平行;
④如果兩個(gè)平面相互垂直,那么經(jīng)過第一個(gè)平面內(nèi)一點(diǎn)且垂直于第二個(gè)平面的直線必在第一個(gè)平面內(nèi).
則所有真命題的序號是   

查看答案和解析>>

同步練習(xí)冊答案