分析:(1)求導(dǎo)函數(shù),確定x=1是f′(x)=0的唯一解,進(jìn)而利用當(dāng)0<x<1時(shí),f′(x)>0;當(dāng)x>1時(shí),f′(x)<0,即可得到函數(shù)的單調(diào)區(qū)間;
(2)利用函數(shù)f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,對(duì)m進(jìn)行分類(lèi)討論,確定函數(shù)的單調(diào)性,即可求得f(x)在[m,2m]上的最大值;
(3)證明在(0,+∞)上恒有
f(x)=-x≤-1,當(dāng)且僅當(dāng)x=1時(shí),等號(hào)成立,即可證得結(jié)論.
解答:(1)解:求導(dǎo)函數(shù)可得
f′(x)=-1=-
令g(x)=x
2+lnx-1,x∈(0,+∞),則g′(x)=2x+
>0,∴函數(shù)g(x)在(0,+∞)上單調(diào)遞增
∵x=1時(shí),f′(x)=0,∴x=1是f′(x)=0的唯一解
∵當(dāng)0<x<1時(shí),f′(x)>0;當(dāng)x>1時(shí),f′(x)<0
∴函數(shù)f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減
(2)解:由(1)知,函數(shù)f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減
①當(dāng)0<2m≤1時(shí),即0<m≤
時(shí),f(x)在[m,2m]上單調(diào)遞增
∴f(x)
max=f(2m)=
-2m②當(dāng)m≥1時(shí),f(x)在[m,2m]上單調(diào)遞減
∴f(x)
max=f(m)=
-m③當(dāng)m<1<2m,即
<m<1時(shí),f(x)
max=f(1)=-1
(3)證明:由(1)知,當(dāng)x∈(0,+∞)時(shí),f(x)
max=f(1)=-1
∴在(0,+∞)上恒有
f(x)=-x≤-1,當(dāng)且僅當(dāng)x=1時(shí),等號(hào)成立
∴對(duì)任意的x∈(0,+∞)恒有l(wèi)nx≤x(x-1)
∵
>1,
∴
ln<(-1)=∴對(duì)任意n∈N
+,不等式
ln<
恒成立.