分析 由不等式x2-2ax+a>0對一切實數(shù)x∈R恒成立求得a的取值范圍,然后利用指數(shù)函數(shù)的單調性把不等式a${\;}^{{t}^{2}+2t-3}$<1轉化為關于t的一元二次不等式求解.
解答 解:∵不等式x2-2ax+a>0對一切實數(shù)x∈R恒成立,
∴(-2a)2-4a<0,解得0<a<1.
由a${\;}^{{t}^{2}+2t-3}$<1,得t2+2t-3>0,即t<-3或t>1.
∴不等式a${\;}^{{t}^{2}+2t-3}$<1的解集為:(-∞,-3)∪(1,+∞).
故答案為:(-∞,-3)∪(1,+∞).
點評 本題考查指數(shù)不等式的解法,考查了恒成立問題的求解方法,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | x2+y2-4x+6y-8=0 | B. | x2+y2-4x+6y+8=0 | C. | x2+y2+4x-6y-8=0 | D. | x2+y2+4x-6y+8=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | M∩N=∅ | B. | M?N | C. | N?M | D. | M=N |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com