已知橢圓C:的離心率與等軸雙曲線的離心率互為倒數(shù),直線與以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓的上頂點(diǎn),過點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點(diǎn)(―1,―1)
(Ⅰ);(Ⅱ)詳見解析
【解析】
試題分析:(I)由等軸雙曲線的離心率為,可得橢圓的離心率,因為直線,與以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓相切,利用點(diǎn)到直線的距離公式和直線與圓相切的性質(zhì)可得,,再利用即可得出;(II)分直線AB的斜率不存在與存在兩種情況討論,①不存在時比較簡單;②斜率存在時,設(shè)直線AB的方程為,由橢圓 與橢圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系及斜率公式,再利用即可證明
試題解析:(Ⅰ)由題意得
, 2分
即,解得 4分
故橢圓C的方程為 5分
(Ⅱ)當(dāng)直線AB的斜率不存在時,設(shè)A,則B,由k1+k2=2得
,得 7分
當(dāng)直線AB的斜率存在時,設(shè)AB的方程為y=kx+b(),,
得, 9分
即
由, 11分
即
故直線AB過定點(diǎn)(―1,―1) 13分
考點(diǎn):直線與圓錐曲線的關(guān)系;橢圓的標(biāo)準(zhǔn)方程
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:的離心率為,雙曲線x²-y²=1的漸近線與橢圓有四個交點(diǎn),以這四個交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓c的方程為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2009年廣東省廣州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學(xué)理卷 題型:選擇題
已知橢圓C:的離心率為,過右焦點(diǎn)且斜率為的直線與橢圓C相交于、兩點(diǎn).若,則 =( )
A. B. C.2 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東省高二第一學(xué)期期末考試文科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
已知橢圓C:,它的離心率為.直線與以原點(diǎn)為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年吉林一中高二下學(xué)期第一次月考數(shù)學(xué)文卷 題型:解答題
.已知橢圓C:的離心率為,橢圓C上任意一點(diǎn)到橢圓兩個焦點(diǎn)的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線:與橢圓C交于,兩點(diǎn),點(diǎn),且,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com