已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,且過點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn),若是橢圓上的動點(diǎn),求線段的中點(diǎn)的軌跡方程.
(1) . (2) .
【解析】
試題分析:(1)由已知得橢圓的半長軸,半焦距,則半短軸. 3分
又橢圓的焦點(diǎn)在軸上, ∴橢圓的標(biāo)準(zhǔn)方程為. 5分
(2)設(shè)線段的中點(diǎn)為 ,點(diǎn)的坐標(biāo)是,
由,得, 9分
由點(diǎn)在橢圓上,得, 11分
∴線段中點(diǎn)的軌跡方程是. 12分
考點(diǎn):本題考查了橢圓的標(biāo)準(zhǔn)方程及軌跡方程的求法
點(diǎn)評:若動點(diǎn)P(x,y)隨已知曲線上的點(diǎn)Q(x0,y0)的變動而變動,且x0、y0可用x、y表示,則將Q點(diǎn)坐標(biāo)表達(dá)式代入已知曲線方程,即得點(diǎn)P的軌跡方程.這種方法稱為相關(guān)點(diǎn)法(或代換法).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
|
π |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
π |
6 |
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
OM |
OC |
A、-1 | B、0 | C、3 | D、4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com