20.已知(1+ax)(1+x)4的展開式中x2的系數(shù)為10,則a=1.

分析 利用二項(xiàng)式定理的展開式即可得出.

解答 解:(1+ax)(1+x)4=(1+ax)$(1+4x+{∁}_{4}^{2}{x}^{2}+{∁}_{4}^{3}{x}^{3}+{x}^{4})$,
展開式中x2的系數(shù)${∁}_{4}^{2}$+4a=10,解得a=1.
故答案為:1.

點(diǎn)評 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.三棱錐P-ABC的底面ABC是邊長為1的正三角形,頂點(diǎn)P到底面的距離為$\frac{{\sqrt{6}}}{2}$,點(diǎn)P,A,B,C均在半徑為1的同一球面上,A,B,C為定點(diǎn),則動(dòng)點(diǎn)P的軌跡所圍成的平面區(qū)域的面積是( 。
A.$\frac{1}{6}π$B.$\frac{1}{3}π$C.$\frac{1}{2}π$D.$\frac{5}{6}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在三角形ABC中,∠A,∠B,∠C分別是三角形的內(nèi)角.
(1)求證:tanA+tanB+tanC=tanA•tanB•tanC
(2)求證:tan$\frac{A}{2}$tan$\frac{B}{2}$+tan$\frac{B}{2}$tan$\frac{C}{2}$+tan$\frac{C}{2}$tan$\frac{A}{2}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.用數(shù)字1,2,3,4,5組成的沒有重復(fù)數(shù)字的五位偶數(shù)的個(gè)數(shù)是( 。
A.120B.60C.50D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,A,H在圓上,過點(diǎn)H作圓的切線BC,AB,AC分別交圓于點(diǎn)M,N.
(1)求證:HB•HM•CN=HC•HN•BM;
(2)若AH為圓的直徑,求證:△AMN∽△ACB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為了探究車流量與PM2.5的濃度是否相關(guān),現(xiàn)采集到北方某城市2015年12月份星期一到星期日某一時(shí)間段車流量與PM2.5的數(shù)據(jù)如表:
時(shí)間星期一星期二星期三星期四星期五星期六星期日
車流量x(萬輛)1234567
PM2.5的濃度y
(微克/立方米)
27313541495662
(1)在表中畫出車流量與PM2.5濃度的散點(diǎn)圖.
(2)求y關(guān)于x的線性回歸方程;
(3)①利用所求回歸方程,預(yù)測該市車流量為8萬輛時(shí),PM2.5的濃度;
②規(guī)定當(dāng)一天內(nèi)PM2.5的濃度平均值在(0,50]內(nèi),空氣質(zhì)量等級(jí)為優(yōu);當(dāng)一天內(nèi)PM2.5的濃度平均值在(50,100]內(nèi),空氣質(zhì)量等級(jí)為良,為使該市某日空氣質(zhì)量等級(jí)為優(yōu)或良,則應(yīng)控制當(dāng)天車流量在多少萬輛以內(nèi)(結(jié)果以萬輛為單位,保留整數(shù))
參考公式:回歸直線的方程是$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.運(yùn)行兩次如圖所示的程序框圖,若第一次與第二次輸入的a的值之和為0,則第一次與第二次輸出的a的值之和為( 。
A.0B.1C.0或1D.-1或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx+$\frac{2}{x}$+ax-a-2(其中a>0).
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)若x∈[1,3]時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.定義在R上的函數(shù)對任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y),且當(dāng)x>0時(shí),f(x)>0,
(1)判斷f(x)的奇偶性;
(2)判斷f(x)的單調(diào)性;
(3)若f(1)=2,解不等式f(3x+4)>4.

查看答案和解析>>

同步練習(xí)冊答案