若xy<0,x,y∈R,則下列不等式中正確的是( 。
A、|x+y|>|x-y|
B、|x-y|<|x|+|y|
C、|x+y|<|x-y|
D、|x-y|<||x|-|y||
考點(diǎn):絕對(duì)值不等式
專題:計(jì)算題,不等式的解法及應(yīng)用
分析:取x=1,y=-1,可得|x+y|=0,|x-y|=2,|x|+|y|=2,|x|-|y|=0,即可得出結(jié)論.
解答: 解:取x=1,y=-1,可得|x+y|=0,|x-y|=2,|x|+|y|=2,|x|-|y|=0,
結(jié)合選項(xiàng),可知C正確.
故選:C.
點(diǎn)評(píng):本題考查絕對(duì)值不等式,考查學(xué)生的計(jì)算能力,正確取特殊值是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=4×(
1
5
n+2n+n2,求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于實(shí)數(shù)a,b,c,下列結(jié)論中正確的是( 。
A、若a>b,則ac2>bc2
B、若a>b>0,則
1
a
1
b
C、若a<b<0,則
b
a
a
b
D、若a>b,
1
a
1
b
,則a>0,b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
2
mx2
-2x+ln(x+1)(m∈R).
(Ⅰ)判斷x=1能否為函數(shù)f(x)的極值點(diǎn),并說(shuō)明理由;
(Ⅱ)若存在m∈[-4,-1),使得定義在[1,t]上的函數(shù)g(x)=f(x)-ln(x+1)+x3在x=1處取得最大值,求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x+lg
x
2-x

(1)求定義域;
(2)求f(x)+f(2-x)的值;
(3)猜想f(x)的圖象具有怎樣的對(duì)稱性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在我校春季運(yùn)動(dòng)會(huì)上,有甲、乙、丙、丁四位同學(xué)進(jìn)行4×100接力賽跑,要求甲不能跑第一棒,乙不能跑第四棒,則共有
 
種接力賽跑方式.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-(a+b)x2+abx,這里0<a<b.
(Ⅰ)設(shè)f(x)在x=s與x=t處取得極值,其中s<t,求證:0<s<a<t<b;
(Ⅱ)設(shè)點(diǎn)A(s,f(s)),B(t,f(t)),求證:線段AB的中點(diǎn)C在曲線y=f(x)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在復(fù)平面內(nèi),復(fù)數(shù)1+i與2i分別對(duì)應(yīng)向量
OA
和,其中O為坐標(biāo)原點(diǎn),則向量
AB
所對(duì)應(yīng)的復(fù)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正方體ABCD-A1B1C1D1中,有下列命題:
①存在直線l1與正方體的所有棱都成等角α1,且tanα1=
2
;
②存在直線l2與正方體的各面都成等角α2,且tanα2=
2
2
;
③存在平面M1與正方體的各條棱所成的角都等于α3,且sinα3=
3
3
;
④存在平面M2與正方體的各面所成的銳角都等于α4,且sinα4=
6
3

其中正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案