如圖(1),是等腰直角三角形,其中,分別為的中點,將沿折起,點的位置變?yōu)辄c,已知點在平面上的射影的中點,如圖(2)所示.

(1)求證:
(2)求三棱錐的體積.
(1)根據(jù)題意,由于題目中可以得到線面垂直,結(jié)合其性質(zhì)定理來得到線線垂直。
(2)

試題分析:

解:(1)證法一:在中,是等腰直角的中位線,
在四棱錐中,,   平面,
平面,          6分
證法二:同證法一

平面
平面        6分
(2)在直角梯形中 ,
, =
垂直平分,          9分
三棱錐的體積為:  12分
點評:主要是考查了空間中線線垂直的證明以及三棱錐的體積的求解,,屬于中檔題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形是正方形,, 
(Ⅰ)求證:平面平面;
(Ⅱ)求三棱錐的高

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角梯形ABCD中,AD//BC,,,如圖(1).把沿翻折,使得平面,如圖(2).

(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積;
(Ⅲ)在線段上是否存在點N,使得?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用長為4,寬為2的矩形做側(cè)面圍成一個圓柱,此圓柱軸截面面積為(   ).
A.8B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面是邊長為2的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分別為PB,PD的中點.

(1)證明:MN∥平面ABCD;
(2) 過點A作AQ⊥PC,垂足為點Q,求二面角A-MN-Q的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使得平面ABEF平面EFDC.

(Ⅰ) 當,是否在折疊后的AD上存在一點,且,使得CP∥平面ABEF?若存在,求出的值;若不存在,說明理由;
(Ⅱ) 設BE=x,問當x為何值時,三棱錐ACDF的體積有最大值?并求出這個最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形是正方形,為對角線的交點,的中點;

(1)求證:;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,已知正方體的棱長為1,動點在此正方體的表面上運動,且,記點的軌跡的長度為,則函數(shù)的圖像可能是(    )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a,b為異面直線,則下列命題中正確的是  (    )
A.過a,b外一點P一定可以引一條與a,b都平行的直線
B.過a,b外一點P一定可以作一個與a,b都平行的平面
C.過a一定可以作一個與b平行的平面
D.過a一定可以作一個與b垂直的平面

查看答案和解析>>

同步練習冊答案