直線x=-1的傾斜角和斜率分別是(  )
A、45°,1
B、90°,不存在
C、135°,-1
D、180°,不存在
考點(diǎn):直線的傾斜角,直線的斜率
專(zhuān)題:直線與圓
分析:垂直于x軸的直線傾斜角為90°,斜率不存在,即可得出.
解答: 解:直線x=-1的傾斜角為90°,斜率不存在.
故選:B.
點(diǎn)評(píng):本題考查了垂直于x軸的直線傾斜角及其斜率,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
,
b
滿(mǎn)足|
a
|=5,|
b
|≥1,且|
a
-4
b
|=21,則
a
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2+5,那么f(-2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,若cosA+cosB=sinC,則△ABC的形狀是( 。
A、等腰三角形
B、等邊三角形
C、等腰直角三角形
D、直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知k為實(shí)數(shù),對(duì)于實(shí)數(shù)a和b定義運(yùn)算“*”:a*b=
a2-kab,a≤b
b2-kab,a>b
,設(shè)f(x)=(2x-1)*(x-1).
(Ⅰ)若f(x)在[-
1
2
,
1
2
]上為增函數(shù),求實(shí)數(shù)k的取值范圍;
(Ⅱ)已知k
1
2
,且當(dāng)x>0時(shí),f(f(x))>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

容量為100的樣本數(shù)據(jù),按從小到大的順序分為8組,如下表:
組號(hào)12345678
頻數(shù)1013x141713129
若要在第3組和第7組中用分層抽樣的方法,抽取8個(gè)數(shù)據(jù),則第3組中應(yīng)抽。ā 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(
π
3
)=1,則函數(shù)g(x)=2cos(2x+φ)+1的單調(diào)遞增區(qū)間是(  )
A、[kπ-
12
,kπ+
π
12
](k∈Z)
B、[kπ+
π
12
,kπ+
12
](k∈Z)
C、[kπ-
3
,kπ+
π
6
](k∈Z)
D、[kπ-
π
3
,kπ+
π
6
](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinθ,cosθ(θ∈(0,π))是方程x2-ax+a=0的兩根,求下列值:
(1)sinθcosθ;   
(2)sinθ-cosθ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:
3(-27)2
+(
1
2
-2+log0.58+lg100+(
5
-1)0

查看答案和解析>>

同步練習(xí)冊(cè)答案