4.當(dāng)y=2sin6x+cos6x取得最小值時(shí),cos2x=3-2$\sqrt{2}$.

分析 先根據(jù)同角的三角函數(shù)的關(guān)系得到y(tǒng)=sin6x+1-3sin2x+3sin4x,再設(shè)sin2x=t,則t∈[0,1],構(gòu)造函數(shù)f(t)=t3+3t2-3t+1,t∈[0,1],利用導(dǎo)數(shù)和最值的關(guān)系求出
sin2x=$\sqrt{2}$-1,再根據(jù)二倍角公式即可求出答案.

解答 解:y=2sin6x+cos6x=2sin6x+(cos2x)3=2sin6x+(1-sin2x)3=2sin6x+1-3sin2x+3sin4x-sin6x=sin6x+1-3sin2x+3sin4x,
設(shè)sin2x=t,則t∈[0,1],
則f(t)=t3+3t2-3t+1,t∈[0,1],
∴f′(t)=3t2+6t-3,
令f′(t)=3t2+6t-3=0,解得t=$\sqrt{2}$-1,
當(dāng)f′(t)>0時(shí),即t∈($\sqrt{2}$-1,1],函數(shù)f(t)單調(diào)遞增,
當(dāng)f′(t)<0時(shí),即t∈[0,$\sqrt{2}$-1],函數(shù)f(t)單調(diào)遞減,
∴當(dāng)t=$\sqrt{2}$-1時(shí),函數(shù)f(t)有最小值,
∴sin2x=$\sqrt{2}$-1時(shí),函數(shù)y=2sin6x+cos6x取得最小值,
∴cos2x=1-2sin2x=1-2($\sqrt{2}$-1)=3-2$\sqrt{2}$,
故答案為:$3-2\sqrt{2}$.

點(diǎn)評 本題考查了同角的三角的關(guān)系和二倍角公式和導(dǎo)數(shù)和函數(shù)的最值的關(guān)系,換元是關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知p:x>1或x<-3,q:x>a,若q是p的充分不必要條件,則a的取值范圍是( 。
A.[1,+∞)B.(-∞,1]C.[-3,+∞)D.(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.命題“?x∈[1,2],則x2-a≥0”是真命題,則a的范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f(x)是R上的偶函數(shù),對任意x∈R,都有f(x+6)=f(x)+f(3),且f(1)=2,則f(2015)的值為( 。
A.0B.-2C.2D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如果兩個方程的曲線經(jīng)過若干次平移或?qū)ΨQ變換后能夠完全重合,則稱這兩個方程為“互為鏡像方程對”.給出下列四對方程:
①y=sinx和y=sin2x;②$y={(\frac{1}{2})^x}$和y=2x;③y2=4x和x2=4y;④y=1+lnx和y=1-lnx
其中是“互為鏡像方程對”的有( 。
A.1對B.2對C.3對D.4對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列說法正確的是(  )
A.小于90°的角是銳角B.鈍角是第二象限的角
C.第二象限的角大于第一象限的角D.若角α與角β的終邊相同,那么α=β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=1+4cosθ\\ y=2+4sinθ\end{array}\right.$(θ為參數(shù))直線l經(jīng)過定點(diǎn)P(2,1),傾斜角為$\frac{π}{6}$.
(1)寫出直線l的參數(shù)方程和曲線C的普通方程.
(2)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知點(diǎn)P(sin$\frac{5π}{4}$,cos$\frac{3π}{4}$)落在角θ的終邊上,且θ∈[0,2π),則θ是第三象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線l1∥l2,A是l1,l2之間的一個交點(diǎn),并且A點(diǎn)到l1,l2的距離分別為1,2,B是直線l2上一動點(diǎn),作AC⊥AB且使AC與直線l1交于點(diǎn)C,則△ABC的面積最小值為2.

查看答案和解析>>

同步練習(xí)冊答案