精英家教網 > 高中數學 > 題目詳情

【題目】對于給定的正整數k,若數列{an}滿足:an﹣k+an﹣k+1+…+an﹣1+an+1+…an+k﹣1+an+k=2kan對任意正整數n(n>k)總成立,則稱數列{an}是“P(k)數列”.
(Ⅰ)證明:等差數列{an}是“P(3)數列”;
(Ⅱ)若數列{an}既是“P(2)數列”,又是“P(3)數列”,證明:{an}是等差數列.

【答案】解:(Ⅰ)證明:設等差數列{an}首項為a1 , 公差為d,則an=a1+(n﹣1)d,
則an﹣3+an﹣2+an﹣1+an+1+an+2+an+3 ,
=(an﹣3+an+3)+(an﹣2+an+2)+(an﹣1+an+1),
=2an+2an+2an ,
=2×3an ,
∴等差數列{an}是“P(3)數列”;
(Ⅱ)證明:由數列{an}是“P(2)數列”則an﹣2+an﹣1+an+1+an+2=4an , ①
數列{an}是“P(3)數列”an﹣3+an﹣2+an﹣1+an+1+an+2+an+3=6an , ②
由①可知:an﹣3+an﹣2+an+an+1=4an﹣1 , ③
an﹣1+an+an+2+an+3=4an+1 , ④
由②﹣(③+④):﹣2an=6an﹣4an﹣1﹣4an+1
整理得:2an=an﹣1+an+1 ,
∴數列{an}是等差數列.
【解析】(Ⅰ)由題意可知根據等差數列的性質,an﹣3+an﹣2+an﹣1+an+1+an+2+an+3=(an﹣3+an+3)+(an﹣2+an+2)+(an﹣1+an+1)═2×3an , 根據“P(k)數列”的定義,可得數列{an}是“P(3)數列”;
(Ⅱ)由“P(k)數列”的定義,則an﹣2+an﹣1+an+1+an+2=4an , an﹣3+an﹣2+an﹣1+an+1+an+2+an+3=6an , 變形整理即可求得2an=an﹣1+an+1 , 即可證明數列{an}是等差數列.
【考點精析】本題主要考查了等差數列的通項公式(及其變式)和等差關系的確定的相關知識點,需要掌握通項公式:;如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,即=d ,(n≥2,n∈N)那么這個數列就叫做等差數列才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數方程為為參數),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為

1)求曲線的普通方程和直線的傾斜角;

2)設點,直線和曲線交于兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】校運動會高二理三個班級的3名同學報名參加鉛球、跳高、三級跳遠3個運動項目,每名同學都可以從3個運動項目中隨機選擇一個,且每個人的選擇相互獨立.

(1)求3名同學恰好選擇了2個不同運動項目的概率;

(Ⅱ)設選擇跳高的人數為試求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知圓 ,點.

(1)求經過點且與圓相切的直線的方程;

(2)過點的直線與圓相交于、兩點,為線段的中點,求線段長度的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{xn}滿足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),證明:當n∈N*時,
(Ⅰ)0<xn+1<xn
(Ⅱ)2xn+1﹣xn ;
(Ⅲ) ≤xn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動點P在以點C為圓心且與BD相切的圓上.若 ,則λ+μ的最大值為( )
A.3
B.2
C.
D.2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知x∈[-,]

(1)求函數y=cosx的值域;

(2)求函數y=-3sin2x-4cosx+4的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,∠A=60°,c= a.(13分)
(1)求sinC的值;
(2)若a=7,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在非零實數集上的函數滿足,且是區(qū)間上的遞增函數.

1)求的值;

2)求證: ;

3)解不等式

查看答案和解析>>

同步練習冊答案