若a=
1
sin7
,b=lgπ,c=e-
1
2
,則( 。
A、a<b<c
B、c<a<b
C、b<a<c
D、b<c<a
考點:不等式比較大小
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可判斷0<sin7<1;b=lgπ<
1
2
;c=e-
1
2
1
2
;從而可得.
解答: 解:由題意,
∵2π<7<2π+
π
2

∴0<sin7<1;
∴a=
1
sin7
>1;
b=lgπ<lg
10
=
1
2
;
c=e-
1
2
=
1
e
1
2
;
故b<c<a;
故選D.
點評:本題考查了對數(shù)函數(shù),三角函數(shù),指數(shù)函數(shù)的單調(diào)性應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正三棱柱ABC A1B1C1中,D為棱AA1的中點,若截面三角形BC1D是面積為6的直角三角形,則此三棱柱的體積為( 。
A、16
3
B、8
3
C、4
3
D、
8
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的長軸長為12,右頂點為A,F(xiàn)1,F(xiàn)2分別是橢圓E的左、右焦點,且|AF1|=5|AF2|.
(Ⅰ)求橢圓E的方程;
(Ⅱ)圓C:(x-2)2+y2=4,點P是橢圓E上任意一點,線段CP交圓C于點Q,求線段PQ長度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確的一個是(  )
A、?x0∈R,ln(x02+1)<0
B、?x>2,x2>2x
C、若q是¬p成立的必要不充分條件,則¬q是p成立的充分不必要條件
D、若x≠kπ(k∈Z),則sin2x+
2
sinx
≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡:(a2b)
1
2
•(ab2-2÷(a-2b)-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義雙曲線對稱軸與雙曲線交點即雙曲線頂點,則等軸雙曲線xy=4的焦距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正項等差數(shù)列{an}的第一、二、三項分別加上2,4,10后恰為等比數(shù)列{bn}的第三、四、五項,且數(shù)列{an}的前三項之和為12.
(1)求an,bn;
(2)設(shè){bn}的前n項和為Sn,若不等式λbn
S
2
n
,對?n∈N*恒成立,求λ的取值范圍;
(3)設(shè){an}的前n項積為Tn,當x∈(1,+∞)時,求證:對?n∈N*,Tnex-1(2x)
1
2
an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的過點(0,1),且離心率等于
2
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)O為坐標原點,橢圓C與直線y=kx+1相交于兩個不同的點A,B,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1的棱長為a,AC1與BD1相交于點O,則有( 。
A、
AB
A1C1
=2a2
B、
AB
AC1
=
2
a2
C、
AB
AO
=
1
2
a2
D、
BC
DA1
=a2

查看答案和解析>>

同步練習(xí)冊答案