設(shè)函數(shù)f(x)=|x+1|+|x-a|(a>0).
(1)作出函數(shù)f(x)的圖象;
(2)若不等式f(x)≥5的解集為(-∞,-2]∪[3,+∞),求a值.
解:(1)f(x)=|x+1|+|x-a|=
,
函數(shù)f(x)如圖所示.
(2)由題設(shè)知:|x+1|+|x-a|≥5,
如圖,在同一坐標(biāo)系中作出函數(shù)y=5的圖象
(如圖所示)
又解集為(-∞,-2]∪[3,+∞).
由題設(shè)知,當(dāng)x=-2或3時(shí),f(x)=5
且a+1<5即a<4,
由f(-2)=-2(-2)-1+a=5得:a=2.
分析:(1)f(x)=|x+1|+|x-a|=
,如圖所示.
(2)由題設(shè)知:|x+1|+|x-a|≥5,在同一坐標(biāo)系中作出函數(shù)y=5的圖象,當(dāng)x=-2或3時(shí),f(x)=5,且a+1<5即a<4,由f(-2)=5 求得 a 的值.
點(diǎn)評(píng):本題考查絕對(duì)值不等式的解法,函數(shù)圖象的特征,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,畫出函數(shù)f(x)的圖象,是解題的關(guān)鍵.