如圖,在正三棱柱ABC-A1B1C1中,已知BB1=BC=2.
(1)求正三棱柱ABC-A1B1C1的體積;
(2)直線(xiàn)AB1與平面AA1C1C所成角的正弦值.

解:(1).(3分)
(2)令E為A1C1中點(diǎn),連B1E,則B1E⊥面ACC1A1
再連AE,得∠B1AE為AB1與面ACC1A所成角.(6分)
在Rt△AB1E中,,,∴
故直線(xiàn)AB1與平面AA1C1C所成角的正弦值.(8分)
分析:(1)由正三棱柱ABC-A1B1C1中,已知BB1=BC=2.我們易求出棱柱的底面積,代入棱柱體積公式即可求出正三棱柱ABC-A1B1C1的體積;
(2)要求直線(xiàn)AB1與平面AA1C1C所成角的正弦值,我們要先找到B1點(diǎn)在平面AA1C1C上的射影,進(jìn)而找到直線(xiàn)AB1在平面AA1C1C上的射影,解三角形即可得到直線(xiàn)AB1與平面AA1C1C所成角的正弦值.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是棱柱的結(jié)構(gòu)特征及直線(xiàn)與平面所成的角,其中要求線(xiàn)面夾角,找出直線(xiàn)上除斜足上任一點(diǎn)在平面上的射影(垂足),進(jìn)而構(gòu)造也線(xiàn)面夾角的平面角是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,AB=1,若二面角C-AB-C1的大小為60°,則點(diǎn)C到平面C1AB的距離為( 。
A、
3
4
B、
1
2
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,若AD與平面AA1CC1所成的角為a,則sina=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,D、E、G分別是AB、BB1、AC1的中點(diǎn),AB=BB1=2.
(Ⅰ)在棱B1C1上是否存在點(diǎn)F使GF∥DE?如果存在,試確定它的位置;如果不存在,請(qǐng)說(shuō)明理由;
(Ⅱ)求截面DEG與底面ABC所成銳二面角的正切值;
(Ⅲ)求B1到截面DEG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在正三棱柱ABC-A1B1C1中,AA1=4,AB=2,M是AC的中點(diǎn),點(diǎn)N在AA1上,AN=
14

(Ⅰ)求BC1與側(cè)面ACC1A1所成角的大;
(Ⅱ)求二面角C1-BM-C的正切值;
(Ⅲ)證明MN⊥BC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•馬鞍山二模)如圖,在正三棱柱ABC一DEF中,AB=2,AD=1,P是CF的延長(zhǎng)線(xiàn)上一點(diǎn),過(guò)A、B、P三點(diǎn)的平面交FD于M,交EF于N.
(I)求證:MN∥平面CDE:
(II)當(dāng)平面PAB⊥平面CDE時(shí),求三梭臺(tái)MNF-ABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案