【題目】已知橢圓E: 的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓E于A、B兩點(diǎn).若AB的中點(diǎn)坐標(biāo)為(1,﹣1),則E的方程為( )
A.
B.
C.
D.
【答案】D
【解析】解:設(shè)A(x1 , y1),B(x2 , y2),
代入橢圓方程得 ,
相減得 ,
∴ .
∵x1+x2=2,y1+y2=﹣2, = = .
∴ ,
化為a2=2b2 , 又c=3= ,解得a2=18,b2=9.
∴橢圓E的方程為 .
故選D.
設(shè)A(x1 , y1),B(x2 , y2),代入橢圓方程得 ,利用“點(diǎn)差法”可得 .利用中點(diǎn)坐標(biāo)公式可得x1+x2=2,y1+y2=﹣2,利用斜率計(jì)算公式可得 = = .于是得到 ,化為a2=2b2 , 再利用c=3= ,即可解得a2 , b2 . 進(jìn)而得到橢圓的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊長成等差數(shù)列,公差為2,且最大角的正弦值為 ,則這個(gè)三角形的周長是( )
A.9
B.12
C.15
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C: =1的離心率為 ,點(diǎn)( ,0)是雙曲線的一個(gè)頂點(diǎn).
(1)求雙曲線的方程;
(2)經(jīng)過的雙曲線右焦點(diǎn)F2作傾斜角為30°直線l,直線l與雙曲線交于不同的A,B兩點(diǎn),求AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(1, )在橢圓E: =1上,若斜率為 的直線l與橢圓E交于B,C兩點(diǎn),當(dāng)△ABC的面積最大時(shí),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=,an+1=3an-1(n∈N*).
(1)若數(shù)列{bn}滿足bn=an-,求證:{bn}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:x∈R,cos2x﹣sinx+2≤m;q:函數(shù) 在[1,+∞)上單調(diào)遞減.
(I)若p∧q為真命題,求m的取值范圍;
(II)若p∨q為真命題,p∧q為假命題,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令 .
(Ⅰ)證明:數(shù)列{bn}是等差數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4t,硝酸鹽18t;生產(chǎn)1車乙種肥料的主要原料是磷酸鹽1t、硝酸鹽15t.現(xiàn)庫存磷酸鹽10t、硝酸鹽66t.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為10000元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為5000元.那么分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=2x2+bx+c,不等式f(x)<0的解集為(0,5).
(1)求b,c的值;
(2)若對(duì)任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,求t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com