已知函數(shù)f(x)(x1)2g(x)4(x1),數(shù)列{an}是各項(xiàng)均不為0的等差數(shù)列,其前n項(xiàng)和為Sn,點(diǎn)(an1,S2n1)在函數(shù)f(x)的圖象上;數(shù)列{bn}滿足b12,bn≠1,且(bnbn1g(bn)f(bn)(nN)

(1)an并證明數(shù)列{bn1}是等比數(shù)列;

(2)若數(shù)列{cn}滿足cn,證明:c1c2c3cn<3.

 

見(jiàn)解析

【解析】(1)因?yàn)辄c(diǎn)(an1S2n1)在函數(shù)f(x)的圖象上,所以S2n1.

n1,n2,得解得a11,d2(d=-1舍去),則an2n1.

(bnbn1g(bn)f(bn),

4(bnbn1)(bn1)(bn1)2.

由題意bn≠1,所以4(bnbn1)bn1

3(bn1)4(bn11),所以

所以數(shù)列{bn1}是以1為首項(xiàng),公比為的等比數(shù)列.

(2)(1),得bn1n1.cn.

Tnc1c2c3cn,

Tn,

Tn,

得,Tn1·22.所以Tn3.

所以c1c2c3cn3<3.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練17練習(xí)卷(解析版) 題型:選擇題

某班的全體學(xué)生參加英語(yǔ)測(cè)試,成績(jī)的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為:[20,40),[40,60),[60,80),[80,100].若低于60分的人數(shù)是15,則該班的學(xué)生人數(shù)是(  )

A45 B50 C55 D60

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練13練習(xí)卷(解析版) 題型:填空題

已知ABCD-A1B1C1D1為正方體,()232·()0;向量與向量的夾角是60°;正方體ABCD-A1B1C1D1的體積為|··|.其中正確命題的序號(hào)是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練11練習(xí)卷(解析版) 題型:解答題

已知四棱錐P?ABCD的底面ABCD是邊長(zhǎng)為2的正方形,PD底面ABCD,E,F分別為棱BC,AD的中點(diǎn).

(1)求證:DE平面PFB

(2)已知二面角P?BF?C的余弦值為,求四棱錐P?ABCD的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練11練習(xí)卷(解析版) 題型:選擇題

某四棱臺(tái)的三視圖如圖所示,則該四棱臺(tái)的體積是(  )

A4 B. C. D6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練10練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)f(x)cos x(x(0,2π))有兩個(gè)不同的零點(diǎn)x1,x2,方程f(x)m有兩個(gè)不同的實(shí)根x3,x4.若把這四個(gè)數(shù)按從小到大排列構(gòu)成等差數(shù)列,則實(shí)數(shù)m的值為(  )

A.- B. C. D.-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷5練習(xí)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,橢圓C1(a>b>0)的離心率為,以坐標(biāo)原點(diǎn)為圓心,橢圓C的短半軸長(zhǎng)為半徑的圓與直線xy20相切.

(1)求橢圓C的方程;

(2)已知點(diǎn)P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對(duì)稱的不同兩點(diǎn),直線PMQN相交于點(diǎn)T.求證:點(diǎn)T在橢圓C上.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷4練習(xí)卷(解析版) 題型:解答題

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O平面ABCD,ABAA1.

(1)證明:A1C平面BB1D1D;

(2)求平面OCB1與平面BB1D1D的夾角θ的大。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷2練習(xí)卷(解析版) 題型:選擇題

已知向量ab滿足|a|2,|b|1,且(ab),則ab的夾角為(  )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案