【題目】(12分)
一只藥用昆蟲的產卵數(shù)y(單位:個)與一定范圍內的溫度(單位:℃)有關,現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據如下表所示.
經計算得
,線性回歸模型的殘差平方和
,其中分別為觀測數(shù)據中的溫度和產卵數(shù),
(1)若用線性回歸模型,求的回歸方程(結果精確到0.1).
(2)若用非線性回歸模型預測當溫度為35℃時,該種藥用昆蟲的產卵數(shù)(結果取整數(shù)).
附:一組數(shù)據,其回歸直線的斜率和截距的最小二乘估計分別為.
科目:高中數(shù)學 來源: 題型:
【題目】關于下列命題:
①若是第一象限角,且,則;
②函數(shù)是偶函數(shù);
③函數(shù)的一個對稱中心是;
④函數(shù)在上是增函數(shù),
所有正確命題的序號是_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別是,其離心率,點為橢圓上的一個動點,面積的最大值為3.
(1)求橢圓的標準方程;
(2)已知點,過點且斜率不為0的直線與橢圓相交于兩點,直線,與軸分別相交于兩點,試問是否為定值?如果,求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)
如圖,在四棱錐
.
(1)當PB=2時,證明:平面平面ABCD.
(2)當四棱錐的體積為,且二面角為鈍角時,求直線PA與平面PCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調查某社區(qū)居民每天參加健身的時間,某機構在該社區(qū)隨機采訪男性、女性各50名,其中每人每天的健身時間不少于1小時稱為“健身族”,否則稱其為"非健身族”,調查結果如下:
健身族 | 非健身族 | 合計 | |
男性 | 40 | 10 | 50 |
女性 | 30 | 20 | 50 |
合計 | 70 | 30 | 100 |
(1)若居民每人每天的平均健身時間不低于70分鐘,則稱該社區(qū)為“健身社區(qū)”. 已知被隨機采訪的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分時間分別是1.2小時,0.8小時,1.5小時,0.7小時,試估計該社區(qū)可否稱為“健身社區(qū)”?
(2)根據以上數(shù)據,能否在犯錯誤的概率不超過5%的情況下認為“健身族”與“性別”有關?
參考公式: ,其中.
參考數(shù)據:
0. 50 | 0. 40 | 0. 25 | 0. 05 | 0. 025 | 0. 010 | |
0. 455 | 0. 708 | 1. 321 | 3. 840 | 5. 024 | 6. 635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程](10分)
在極坐標系中,圓C的極坐標方程為,若以極點O為原點,極軸為x軸的正半軸建立平面直角坐標系.
(1)求圓C的一個參數(shù)方程;
(2)在平面直角坐標系中,是圓C上的動點,試求的最大值,并求出此時點P的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某社區(qū)組織“學習強國”的知識競賽,從參加競賽的市民中抽出40人,將其成績分成以下6組:第1組,第2組,第3組,第4組,第5組,第6組,得到如圖所示的頻率分布直方圖.現(xiàn)采用分層抽樣的方法,從第2,3,4組中按分層抽樣抽取8人,則第2,3,4組抽取的人數(shù)依次為( )
A.1,3,4B.2,3,3C.2,2,4D.1,1,6
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,已知AB=a,BC=b(a>b),在AB,AD,CB,CD上,分別截取AE=AH=CF=CG=x(x>0),設四邊形EFGH的面積為y.
(1)寫出四邊形EFGH的面積y與x之間的函數(shù)關系;
(2)求當x為何值時y取得最大值,最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com