某汽車的月生產(chǎn)總值平均增長率為p,則年平均生產(chǎn)總值的平均增長率為
 
考點:有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質(zhì)及應用
分析:設出該工廠年初的生產(chǎn)總值和年平均增長率,然后根據(jù)年末(12月底)的生產(chǎn)總值相等列式求年平均增長率.
解答: 解:設年初該工廠的產(chǎn)值為1,再設該工廠的年平均增長率為x,
則1×(1+p)12=1×(1+x),所以x=(1+p)12-1.
所以該工廠的年平均增長率為(1+p)12-1.
故答案為:(1+p)12-1
點評:本題考查了等比數(shù)列的通項公式,考查了學生的建模能力,解答此題的關鍵是兩種不同增長方式下12月底的生產(chǎn)總值相等,此題是基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)為R上增函數(shù),且對任意x∈R,都有f[f(x)-3x]=4,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于函數(shù)f(x)及其定義域內(nèi)的一個區(qū)間[m,n](m<n),若f(x)在[m,n]內(nèi)的值域為[m,n],則稱[m,n]為f(x)的保值區(qū)間.函數(shù)f(x)=ax2-2x的保值區(qū)間能否是[-1,2]?若能,求出a的一個值;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學在高二年級開設大學先修課程《線性代數(shù)》,共有50名同學選修,其中男同學30名,女同學20名.為了對這門課程的教學效果進行評估,學校按性別采用分層抽樣的方法抽取5人進行考核.
(Ⅰ)求抽取的5人中男、女同學的人數(shù);
(Ⅱ)考核前,評估小組打算從選出的5人中隨機選出2名同學進行訪談,求選出的兩名同學中恰有一名女同學的概率;
(Ⅲ)考核分答辯和筆試兩項.5位同學的筆試成績分別為115,122,105,111,109;結(jié)合答辯情況,他們的考核成績分別為125,132,115,121,119.這5位同學筆試成績與考核成績的方差分別記為s12
,s22,試比較s12與s22的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等比數(shù)列{an}滿足:a1+a6=11,a3•a4=
32
9
,且公比q∈(0,1).
(1)求數(shù)列{an}的通項公式;
(2)若該數(shù)列前n項和Sn=21,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)gA(x)的定義域 A=[a,b),且gA(x)=(
x
a
-1)2+(
b
x
-1)2,其中a,b為任意的正實數(shù),且a<b.
(1)求gA(x)的最小值;
(2)討論gA(x)的單調(diào)性;
(3)若x1∈Ik=[k2,(k+1)2],x2∈Ik+1=[(k+1)2,(k+2)2],證明:g Ik(x1)+g Ik+1(x2)>
4
k(k+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x1和x2是方程x2-mx-2=0的兩個實根,不等式a2-5a-3≥|x1-x2|對任意實數(shù)m∈[-1,1]恒成立,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某種放射性元素m克,其衰變函數(shù)為y=m•ekx,100年后只剩原來的一半,現(xiàn)有這種元素1克,3年后,剩下(  )
A、0.015g
B、(1-0.5%)3g
C、0.925g
D、
1000.125
g

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}的公差為2,且a3=6.
(Ⅰ)求數(shù)列{an}的通項公式及前n項和Sn;
(Ⅱ)數(shù)列{bn}滿足bn=
1
an
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案