分析 命題p:可得m≤(x2)min.命題q:可得△<0,解得m范圍.若命題p∧q為真命題,可得p與q都為真命題,即可得出.
解答 解:命題p:?x∈[1,2],x2-m≥0,∴m≤(x2)min=1.
命題q:?x∈R,x2+mx+1>0,△=m2-4<0,解得-2<m<2.
若命題p∧q為真命題,∴p與q都為真命題,∴$\left\{\begin{array}{l}{m≤1}\\{-2<m<2}\end{array}\right.$,解得-2<m≤1.
實(shí)數(shù)m的取值范圍是-2<m≤1.
故答案為:(-2,1].
點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì)、復(fù)合命題真假的判定方法、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是奇函數(shù),且在[0,1]上是減函數(shù) | B. | 是奇函數(shù),且在[1,+∞)上是減函數(shù) | ||
C. | 是偶函數(shù),且在[-1,0]上是減函數(shù) | D. | 是偶函數(shù),且在(-∞,-1]上是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 8 | C. | 10 | D. | 23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | -1 | D. | -2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com