(本小題滿分16分)

已知橢圓的左、右頂點分別A、B,橢圓過點(0,1)且離心率.

(1)求橢圓的標準方程;

(2)過橢圓上異于A,B兩點的任意一點P作PH⊥軸,H為垂足,延長HP到點Q,且PQ=HP,過點B作直線軸,連結(jié)AQ并延長交直線于點M,N為MB的中點,試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

 

【答案】

(1).(2)直線QN與圓O相切.

【解析】(1)由b=1和離心率e,可求出a,c的值,從而可求出橢圓的標準方程.

(II) 設(shè),則,設(shè),∵HP=PQ,∴

,將代入,

所以Q點在以O(shè)為圓心,2為半徑的圓上,即Q點在以AB為直徑的圓O上.

然后求出N的坐標,再對坐標化可得=0,從而證得直線QN與圓O相切.

解: (1)因為橢圓經(jīng)過點(0,1),所以,又橢圓的離心率,

,由,所以,

故所求橢圓方程為.(6分)

(2)設(shè),則,設(shè),∵HP=PQ,∴

,將代入,

所以Q點在以O(shè)為圓心,2為半徑的圓上,即Q點在以AB為直徑的圓O上.

又A(-2,0),直線AQ的方程為,令,則,

又B(2,0),N為MB的中點,∴,,

,∴,∴直線QN與圓O相切.(16分)

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2010江蘇卷)18、(本小題滿分16分)

在平面直角坐標系中,如圖,已知橢圓的左、右頂點為A、B,右焦點為F。設(shè)過點T()的直線TA、TB與橢圓分別交于點M、,其中m>0,。

(1)設(shè)動點P滿足,求點P的軌跡;

(2)設(shè),求點T的坐標;

(3)設(shè),求證:直線MN必過x軸上的一定點(其坐標與m無關(guān))。

查看答案和解析>>

科目:高中數(shù)學 來源:2010年泰州中學高一下學期期末測試數(shù)學 題型:解答題

(本小題滿分16分)
函數(shù),(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對任意時,恒成立,求實數(shù)的范圍;
(Ⅲ)如果,當“對任意恒成立”與“內(nèi)必有解”同時成立時,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江蘇大豐新豐中學高二上期中考試文數(shù)學試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達式;

(總開發(fā)費用=總建筑費用+購地費用)

(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆安徽省蚌埠市高二下學期期中聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分16分)設(shè)命題:方程無實數(shù)根; 命題:函數(shù)

的值域是.如果命題為真命題,為假命題,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高一第三階段檢測數(shù)學卷 題型:解答題

(本小題滿分16分)

已知函數(shù)f(x)=為偶函數(shù),且函數(shù)yf(x)圖象的兩相鄰對稱軸間的距離為

(Ⅰ)求f)的值;

(Ⅱ)將函數(shù)yf(x)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標延長到原來的4倍,縱坐標不變,得到函數(shù)yg(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

 

查看答案和解析>>

同步練習冊答案