已知偶函數(shù)y=f(x)在區(qū)間(-∞,0]上是增函數(shù),下列不等式一定成立的是


  1. A.
    f(3)>f(-2)
  2. B.
    f(-π)>f(3)
  3. C.
    f(1)>f(a2+2a+3)
  4. D.
    f(a2+2)>f(a2+1)
C
分析:由y=f(x)為偶函數(shù)可得f(-x)=f(x),且在區(qū)間(-∞,0]上是增函數(shù),從而可得y=f(x)在[0,+∞)上單調(diào)遞減,A:f(-2)=f(2)>f(3),B:f(-π)=f(π)<f(3),C:由a2+2a+3=(a+1)2+2>1,D:a2+2>a2+1,從而可判斷
解答:∵y=f(x)為偶函數(shù)可得f(-x)=f(x),且在區(qū)間(-∞,0]上是增函數(shù)
∴y=f(x)在[0,+∞)上單調(diào)遞減
A:f(-2)=f(2)>f(3),故A錯(cuò)誤
B:f(-π)=f(π)<f(3),故B錯(cuò)誤
C:由a2+2a+3=(a+1)2+2>1可得,f(a2+2a+3)<f(1),故C正確
D:a2+2>a2+1可得f(a2+2)<f(a2+1),故D錯(cuò)誤
點(diǎn)評:本題主要考查了偶函數(shù)的性質(zhì):對稱區(qū)間上的單調(diào)性相反的性質(zhì)的應(yīng)用,屬于基礎(chǔ)試題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

35、已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:(1)f(5)=0;(2)f(x)在[1,2]上減函數(shù);(3)f(x)的圖象關(guān)與直線x=1對稱;(4)函數(shù)f(x)在x=0處取得最大值;(5)函數(shù)y=f(x)沒有最小值,其中正確的序號(hào)是
(1)(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)y=f(x)在[-1,0]上為單調(diào)遞減函數(shù),又α、β為銳角三角形的兩內(nèi)角,則(  )
A、f(sinα)>f(cosβ)B、f(sinα)<f(cosβ)C、f(sinα)>f(sinβ)D、f(cosα)>f(cosβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)y=f(x)滿足條件f(x+1)=f(x-1),且當(dāng)x∈[-1,0]時(shí),f(x)=3x+
4
9
,則f(log
1
3
5)
的值等于
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)y=f(x)在區(qū)間(-∞,0]上是增函數(shù),下列不等式一定成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[0,3]上單調(diào)遞增,在區(qū)間[3,+∞)上單調(diào)遞減,且滿足f(-4)=f(1)=0,則不等式x3f(x)<0的解集是( 。

查看答案和解析>>

同步練習(xí)冊答案