精英家教網 > 高中數學 > 題目詳情
已知△ABC為邊長3的正三角形,則
AB
BC
=
 
考點:平面向量數量積的運算
專題:計算題,平面向量及應用
分析:運用向量的數量積的定義,注意夾角為π-B,運用公式計算即可得到.
解答: 解:
AB
BC
=|
AB
|•|
BC
|•cos(π-B)
=-3×3×cos60°
=-9×
1
2

=-
9
2

故答案為:-
9
2
點評:本題考查平面向量的數量積的定義,考查向量夾角的概念,屬于基礎題和易錯題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

正方體ABCD-A1B1C1D1中,M,N分別是CC1,B1C1的中點,則過A1,M,N三點的平面截正方體所得的截面形狀是(  )
A、平行四邊形B、直角梯形
C、等腰梯形D、三角形

查看答案和解析>>

科目:高中數學 來源: 題型:

非等邊三角形ABC的外接圓半徑為1,最長的邊a=
3

(1)求角A.
(2)求bc的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設雙曲線
y2
a2
-
x2
b2
=1(a,b>0)的一個焦點與拋物線x2=8y的焦點相同,離心率為2,則此雙曲線的標準方程為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設命題p:關于x的不等式ax>1(a>0,a≠1)的解集為(-∞,0);命題q:函數f(x)=ln(ax2-x+2)的定義域是R.如果命題“p∨q”為真命題,“p∧q”為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左頂點和上頂點分別為A,B,點D(
2
,
2
2
)為橢圓上一點,且OD∥AB.
(1)求橢圓的標準方程;
(2)D′與D關于x軸對稱,P為線段OD′延長線上一點,直線PA交橢圓于另外一點,直線PB交橢圓于另外一點F,
①求直線PA與PB的斜率之積;
②直線AB與EF是否平行?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知:不等式|x+4|+|x-m|≤5的解集為{x|-4≤x≤1},求m的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,向量
m
=(cosA,sinA),向量
n
=(
2
-sinA,cosA),若|
m
+
n
|=2
(Ⅰ)求角A的大小
(Ⅱ)若△ABC外接圓的半徑為2,b=2,求邊c的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知拋物線C:y2=2px(p>0)過點P(1,-2).
(Ⅰ)求拋物線C的方程,并求其準線方程;
(Ⅱ)過焦點F且斜率為2的直線l與拋物線交于A,B兩點,求弦長|AB|

查看答案和解析>>

同步練習冊答案