【題目】如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠APC90°,∠BPD120°,PBPD

1)求證:平面APC⊥平面BPD;

2)若AB2AP2,求三棱錐C-PBD的體積.

【答案】1)詳見解析;(2

【解析】

(1)記交點為,利用證得線面垂直,從而可證得面面垂直;

2)設(shè),利用求得,從而得的長度,過,垂足為,由(1)可證就是四棱錐的高,求出這個高及底面面積, 用換底法可得體積.

1)證明:記交點為,∵,的中點,∴,又∵為菱形,∴

是平面內(nèi)兩條相交直線,∴平面

平面,∴平面平面

2)設(shè),∵,∴,又,所以,所以,因為,所以在中,由勾股定理得,∴,∴

,垂足為,由(1)知,平面,∴平面平面.又平面平面,所以平面

中,得,所以三棱錐的體積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓,以為圓心的圓記為圓,已知圓上的點與圓上的點之間距離的最大值為21.

1)求圓的標(biāo)準(zhǔn)方程;

2)求過點且與圓相切的直線的方程;

3)已知直線軸不垂直,且與圓,圓都相交,記直線被圓,圓截得的弦長分別為,.,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年年初,我國多個地區(qū)發(fā)生了持續(xù)性大規(guī)模的霧霾天氣,給我們的身體健康產(chǎn)生了巨大的威脅.私家車的尾氣排放也是造成霧霾天氣的重要因素之一,因此在生活中我們應(yīng)該提倡低碳生活,少開私家車,盡量選擇綠色出行方式,為預(yù)防霧霾出一份力.為此,很多城市實施了機動車車尾號限行,我市某報社為了解市區(qū)公眾對車輛限行的態(tài)度,隨機抽查了50人,將調(diào)查情況進行整理后制成下表:

年齡(歲)

[15,25

[25,35

[35,45

[45,55

[5565

[65,75]

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

4

6

9

6

3

4

)完成被調(diào)查人員的頻率分布直方圖;

)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機選取兩人進行進行追蹤調(diào)查,記選中的4人中不贊成車輛限行的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】節(jié)約資源和保護環(huán)境是中國的基本國策.某化工企業(yè),積極響應(yīng)國家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良后所排放的廢氣中含有的污染物數(shù)量為.設(shè)改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為,則第次改良后所排放的廢氣中的污染物數(shù)量,可由函數(shù)模型給出,其中是指改良工藝的次數(shù).

(1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;

(2)依據(jù)國家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過,試問至少進行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達標(biāo).(參考數(shù)據(jù):取

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

求函數(shù)的單調(diào)區(qū)間;

如果對于任意的,總成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)證明:當(dāng)a3時,函數(shù)有且只有兩個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)令函數(shù),若函數(shù)有且只有一個零點,試判斷與3的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓柱底面半徑為1,高為,是圓柱的一個軸截面,動點從點出發(fā)沿著圓柱的側(cè)面到達點,其距離最短時在側(cè)面留下的曲線如圖所示.將軸截面繞著軸逆時針旋轉(zhuǎn)后,邊與曲線相交于點.

1)求曲線的長度;

2)當(dāng)時,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 命題“若,則”的否命題是“若,則

B. 命題“,”的否定是“

C. 處有極值”是“”的充要條件

D. 命題“若函數(shù)有零點,則“”的逆否命題為真命題

查看答案和解析>>

同步練習(xí)冊答案