7.已知$\overrightarrow a$=(-2,1),$\overrightarrow b$=(1,λ),若$\overrightarrow a$∥$\overrightarrow b$,則λ=$-\frac{1}{2}$.

分析 利用向量共線定理即可得出.

解答 解:∵$\overrightarrow a$∥$\overrightarrow b$,
∴-2λ-1=0,解得λ=-$\frac{1}{2}$.
故答案為:-$\frac{1}{2}$.

點評 本題考查了向量共線定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知△ABC為邊長為1的正三角形,O、D為△ABC所在平面內(nèi)的點,$\overrightarrow{OC}$-3$\overrightarrow{OD}$+2$\overrightarrow{OB}$=$\overrightarrow 0$,則$\overrightarrow{DB}$•$\overrightarrow{DA}$=(  )
A.-$\frac{1}{18}$B.-$\frac{1}{6}$C.-$\frac{1}{3}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法正確的是( 。
A.“f(0)”是“函數(shù) f(x)是奇函數(shù)”的充要條件
B.若 p:?x0∈R,x02-x0-1>0,則¬p:?x∈R,x2-x-1<0
C.若 p∧q為假命題,則p,q均為假命題
D.“若α=$\frac{π}{6}$,則sinα=$\frac{1}{2}$”的否命題是“若 α≠$\frac{π}{6}$,則 sinα≠$\frac{1}{2}$”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線ax+4y-2=0和2x-5y+b=0垂直,交于點A(1,m),則a=10,b=-12,m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)是定義在R上的奇函數(shù),對任意兩個不相等的正數(shù)x1,x2,都有$\frac{{{x_2}f({x_1})-{x_1}f({x_2})}}{{{x_1}-{x_2}}}$<0,記a=25f(0.22),b=f(1),c=-log53×f(log${\;}_{\frac{1}{3}}}$5),則( 。
A.c<b<aB.b<a<cC.c<a<bD.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知tanθ=2,則$\frac{1-sin2θ}{{2{{cos}^2}θ}}$的值為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.$-\frac{1}{2}$D.$-\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知a>b>1,若logab+logba=$\frac{10}{3}$,ab=ba,則由a,b,3b,b2,a-2b構(gòu)成的包含元素最多的集合的子集個數(shù)是( 。
A.32B.16C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.命題p:函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x<0}\\{ln(x+1),x≥0}\end{array}\right.$且|f(x)|≥ax.q:函數(shù)g(x)為定義在R上的奇函數(shù),當(dāng)x≥0時,g(x)=$\frac{1}{2}$(|x-a2|+|x-2a2|-3a2),且?x∈R,f(x-1)≤f(x)恒成立.
(1)若p且q為真命題,求a的取值范圍;
(2)若p或q為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.執(zhí)行如圖所示的流程圖,則輸出的M應(yīng)為2 

查看答案和解析>>

同步練習(xí)冊答案