已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1}且B≠∅,若A∪B=A,則m的取值范圍是
(2,4]
(2,4]
分析:據(jù)題意得B⊆A,-2≤m+1<2m-1≤7,轉(zhuǎn)化為不等式組
m+1≥-2
m+1<2m-1
2m-1≤7
,解不等式組求得m的取值范圍.
解答:解:據(jù)題意得B⊆A,故有-2≤m+1<2m-1≤7,轉(zhuǎn)化為不等式組
m+1≥-2
m+1<2m-1
2m-1≤7

解得 2<m≤4,故m的取值范圍是的取值范圍是(2,4],
故答案為 (2,4].
點(diǎn)評(píng):本題主要考查集合中參數(shù)的取值問(wèn)題,兩個(gè)集合的并集的定義,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|
x-2ax-(a2+1)
<0},B={x|x<5a+7},若A∪B=B
,則實(shí)數(shù)a的值范圍是
[-1,6]
[-1,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x
log
1
2
(x+2)>-3
x2≤2x+15
,B={x|m+1≤x≤2m-1}

(I)求集合A;
(II)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|0<x2-x≤2},B={x|x2-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2+3x-18>0},B={x|x2-(k+1)x-2k2+2k≤0},若A∩B≠∅,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案