如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面是直角梯形,AB⊥AD,點E在線段AD上,且CE∥AB。

求證:CE⊥平面PAD;
(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積

(1)由已知PACE,又ABAD,CE∥AB,得到CEAD,所以CE⊥平面PAD(2)

解析試題分析:(I)因為PA⊥底面ABCD,CE平面ABCD,所以PACE。又底面是直角梯形,AB⊥AD,且CE∥AB,所以CEAD,而PA,AD交于點A,所以CE⊥平面PAD。
(II)因為PA=AB=1,AD=3,CD=,∠CDA=45°,所以BC=AD-CDcos45°=3-1=2,故四棱錐P-ABCD的體積為。
考點:本題主要考查立體幾何的平行關系、垂直關系,體積計算。
點評:典型題,立體幾何題,是高考必考內容,往往涉及垂直關系、平行關系、角、距離、體積的計算。在計算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計算”的步驟,利用向量則能簡化證明過程。本題較為簡單。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知正方體中,面中心為

(1)求證:;
(2)求異面直線所成角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,為圓的直徑,點、在圓上,矩形所在的平面和圓所在的平面互相垂直,且,.

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中點。

(I)求證:A1B∥平面AMC1;
(II)求直線CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問:在棱A1B1上是否存在點N,使AN與MC1成角60°?若存在,確定點N的位置;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知三棱錐S—ABC的底面是正三角形,A點在側面SBC上的射影H是△SBC的垂心.

(1)求證:BC⊥SA
(2)若S在底面ABC內的射影為O,證明:O為底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱錐S—ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,正方體ABCD—A1B1C1D1棱長為8,E、F分別為AD1,CD1中點,G、H分別為棱DA,DC上動點,且EH⊥FG.

(1)求GH長的取值范圍;
(2)當GH取得最小值時,求證:EH與FG共面;并求出此時EH與FG的交點P到直線的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,⊙O的直徑AB=4,點C、D為⊙O上兩點,且∠CAB=45o,F(xiàn)為的中點.沿直徑AB折起,使兩個半圓所在平面互相垂直(如圖2).

(Ⅰ)求證:OF//平面ACD;
(Ⅱ)在上是否存在點,使得平面平面ACD?若存在,試指出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐中,平面,底面是菱形,,

(Ⅰ)求證:
(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,五面體中, ,底面ABC是正三角形, =2.四邊形是矩形,二面角為直二面角,D為中點。
(I)證明:平面;
(II)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案