(2013•浙江)如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=,∠ABC=120°,G為線段PC上的點.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)若G是PC的中點,求DG與PAC所成的角的正切值;
(Ⅲ)若G滿足PC⊥面BGD,求的值.
(1)見解析   (2)    (3)
(Ⅰ)證明:∵在四棱錐P﹣ABCD中,PA⊥面ABCD,∴PA⊥BD. 
∵AB=BC=2,AD=CD=,設(shè)AC與BD的交點為O,則BD是AC的中垂線,故O為AC的中點,且BD⊥AC.
而PA∩AC=A,∴BD⊥面PAC.
(Ⅱ)若G是PC的中點,O為AC的中點,則GO平行且等于PA,故由PA⊥面ABCD,可得GO⊥面ABCD,
∴GO⊥OD,故OD⊥平面PAC,故∠DGO為DG與平面PAC所成的角.
由題意可得,GO=PA=
△ABC中,由余弦定理可得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+4﹣2×2×2×cos120°=12,
∴AC=2,OC=
∵直角三角形COD中,OD==2,
∴直角三角形GOD中,tan∠DGO==
(Ⅲ)若G滿足PC⊥面BGD,∵OG?平面BGD,∴PC⊥OG,且 PC==
由△COG∽△PCA,可得,即 ,解得GC=,
∴PG=PC﹣GC==,∴==
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(滿分14分)如圖在三棱錐中,分別為棱的中點,已知

求證(1)直線平面;
(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐中,底面為平行四邊形,
底面
(1)證明:平面平面;
(2)若二面角大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
在直三棱柱ABC—A1B1C1中,∠ABC=90°,BC=CC1,M、N分別為BB1、
A1C1的中點.
(1)求證:CB1⊥平面ABC1;
(2)求證:MN//平面ABC1.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在三棱柱中,底面,E、F分別是棱的中點.

(Ⅰ)求證:AB⊥平面AA1 C1C;
(Ⅱ)若線段上的點滿足平面//平面,試確定點的位置,并說明理由;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)面底面,分別為,中點,
(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在一點,使平面?若存在,指出點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:在四棱錐中,底面是正方形,,,點上,且.

(1)求證:平面;   
(2)求二面角的余弦值;
(3)證明:在線段上存在點,使∥平面,并求的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知平面α⊥平面β,α∩β=l,點A∈α,A∉l,直線AB∥l,直線AC⊥l,直線m∥α,m∥β,則下列四種位置關(guān)系中,不一定成立的是(  )
A.AB∥m B.AC⊥m
C.AB∥β D.AC⊥β

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)是兩條不同的直線,是兩個不同的平面,給出下列條件,能得到的是( )
A.B.C.D.

查看答案和解析>>

同步練習冊答案