18.已知雙曲線$E:{x^2}-\frac{y^2}{3}=1$的左焦點(diǎn)為F,直線x=2與雙曲線E相交于A,B兩點(diǎn),則△ABF的面積為( 。
A.12B.24C.$4\sqrt{3}$D.$8\sqrt{3}$

分析 求出雙曲線的左焦點(diǎn),求出AB坐標(biāo),然后求解三角形的面積.

解答 解:雙曲線$E:{x^2}-\frac{y^2}{3}=1$的左焦點(diǎn)為F(-2,0),
直線x=2與雙曲線E相交于A,B兩點(diǎn),
則A(2,3),B(2,-3),
則△ABF的面積為:$\frac{1}{2}×$6×4=12.
故選:A.

點(diǎn)評(píng) 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.過拋物線y2=-4x的焦點(diǎn)作直線交拋物線于A(x1,y1),B(x2,y2),若x1+x2=-6,則|AB|為(  )
A.8B.10C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在區(qū)間[-1,3]內(nèi)任取一個(gè)實(shí)數(shù)x滿足log2(x-1)>0的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)$f(x)={x^3}+{log_2}(x+\sqrt{{x^2}+1})$,則對(duì)任意實(shí)數(shù)a、b,若a+b≥0則( 。
A.f(a)+f(b)≤0B.f(a)+f(b)≥0C.f(a)-f(b)≤0D.f(a)-f(b)≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=f'(1)ex-1-f(0)x+$\frac{1}{2}{x^2}(f'(x)是f(x)$的導(dǎo)數(shù),e為自然對(duì)數(shù)的底數(shù))g(x)=$\frac{1}{2}{x^2}$+ax+b(a∈R,b∈R)
(Ⅰ)求f(x)的解析式及極值;
(Ⅱ)若f(x)≥g(x),求$\frac{b(a+1)}{2}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且滿足acosB=bcosA.
(Ⅰ)判斷△ABC的形狀;
(Ⅱ)求$sinB+cos({A+\frac{π}{6}})$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A.$f(x)=2sin({x-\frac{π}{6}})$B.$f(x)=2sin({2x-\frac{π}{3}})$C.$f(x)=2sin({x+\frac{π}{12}})$D.$f(x)=2sin({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,滿足$\overrightarrow a=({S_{n+1}}-2{S_n},{S_n})$,$\overrightarrow b=(2,n)$,$\overrightarrow a∥\overrightarrow b$.
(1)求證:數(shù)列$\{\frac{S_n}{n}\}$為等比數(shù)列;
(2)求數(shù)列{Sn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,若f(f(a))=2,則實(shí)數(shù)a的值為-$\sqrt{3}$,$\frac{1}{2}$,16.

查看答案和解析>>

同步練習(xí)冊(cè)答案