14.將含有3n個正整數(shù)的集合M分成元素個數(shù)相等且兩兩沒有公共元素的三個集合A、B、C,其中A={a1,a2,…,an},B={b1,b2,…,bn},C={c1,c2,…,cn},若A、B、C中的元素滿足條件:c1<c2<…<cn,ak+bk=ck,k=1,2,…,n,則稱M為“完并集合”.
(1)若M={1,x,3,4,5,6}為“完并集合”,求x的值;
(2)對于“完并集合”M={1,2,3,4,5,6,7,8,9,10,11,12},在所有符合條件的集合C中,求元素乘積最小的集合C.

分析 (1)討論集合A與集合B,根據(jù)完并集合的概念知集合C,根據(jù)ak+bk=ck建立等式可求出x的值;
(2)討論集合A與集合B,根據(jù)完并集合的概念知集合C,然后比較得元素乘積最小的集合即可.

解答 解:(1)若集合A={1,4},B={3,5},根據(jù)完并集合的概念知集合C={6,x},∴x=“4+3=7,
“若集合A={1,5},B={3,6},根據(jù)完并集合的概念知集合C={4,x},∴x=“5+6=11,
“若集合A={1,3},B={4,6},根據(jù)完并集合的概念知集合C={5,x},∴x=3+6=9,
故x的一個可能值為7,9,11 中任一個;
(2)若A={1,2,3,4},B={5,8,7,9},則C={6,10,12,11},
若A={1,2,3,4},B=“{5,6,8,10 },則C={7,9,12,11},
若A={1,2,3,4},B={5,6,7,11},則C={8,10,12,9},
這兩組比較得元素乘積最小的集合是{6,10,11,12}.

點(diǎn)評 這類題型的特點(diǎn)是在通過假設(shè)來給出一個新概念,在新情景下考查考生解決問題的遷移能力,要求解題者緊扣新概念,對題目中給出的條件抓住關(guān)鍵的信息,進(jìn)行整理、加工、判斷,實(shí)現(xiàn)信息的轉(zhuǎn)化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.盒內(nèi)放有大小相同的10個小球,其中有5個紅球,3個白球,2個黃球,從中任取2個球,求其中至少有1個白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=$\frac{\sqrt{2-ax}}{a-1}$在[0,$\frac{1}{2}$]上是減函數(shù),則a的取值范圍是a<0或1<a≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各式中,最小值為2的是(  )
A.$x+\frac{1}{x}$B.$\sqrt{{x^2}+2}+\frac{4}{{\sqrt{{x^2}+2}}}$C.$\frac{y}{x}+\frac{x}{y}$D.$x-2\sqrt{x}+3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列各組函數(shù)表示同一函數(shù)的是( 。
A.y=x與$y=\sqrt{x^2}$B.y=x+1與$y=\frac{{{x^2}-1}}{x-1}$
C.$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$與y=0D.y=x與$y=\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知:θ為第一象限角,$\overrightarrow{a}$=(sin(θ-π),1),$\overrightarrow$=(sin($\frac{π}{2}$-θ),-$\frac{1}{2}$),
(1)若$\overrightarrow{a}$∥$\overrightarrow$,求$\frac{sinθ+3cosθ}{sinθ-cosθ}$的值;
(2)若|$\overrightarrow{a}$+$\overrightarrow$|=1,求sinθ+cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,已知$AB=\sqrt{3}$,$C=\frac{π}{3}$,則$\overrightarrow{CA}•\overrightarrow{CB}$的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}x{e^x}(x<0)\\-2x(x≥0)\end{array}\right.$,若函數(shù)g(x)=f(x)-m有3個零點(diǎn),則m的取值范圍是(-$\frac{1}{e}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=cos(x-$\frac{π}{4}$)-sin(x-$\frac{π}{4}$).
(Ⅰ)判斷函數(shù)f(x)的奇偶性,并給出證明;
(Ⅱ)若θ為第一象限角,且f(θ+$\frac{π}{3}$)=$\frac{\sqrt{2}}{3}$,求cos(2θ+$\frac{π}{6}$)的值.

查看答案和解析>>

同步練習(xí)冊答案