精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=2 sinxcosx+1﹣2sin2x,x∈R.
(1)求函數f(x)的最小正周期和單調遞增區(qū)間;
(2)將函數y=f(x)的圖象上各點的縱坐標保持不變,橫坐標縮短到原來的 ,把所得到的圖象再向左平移 單位,得到的函數y=g(x)的圖象,求函數y=g(x)在區(qū)間 上的最小值.

【答案】
(1)解:因為 =

故 函數f(x)的最小正周期為T=π. ,k∈Z,

得f(x)的單調遞增區(qū)間為 ,k∈Z


(2)解:根據條件得μ= ,當x∈ 時, ,

所以當x= 時,


【解析】(1)化簡函數的解析式為 ,函數f(x)的最小正周期為T=π. ,k∈Z,求得f(x)的單調遞增區(qū)間.(2)根據條件得 ,所以當x= 時,
【考點精析】利用正弦函數的單調性和函數y=Asin(ωx+φ)的圖象變換對題目進行判斷即可得到答案,需要熟知正弦函數的單調性:在上是增函數;在上是減函數;圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖所示的幾何體中,四邊形AA1B1B是邊長為3的正方形,CC1=2,CC1∥AA1 , 這個幾何體是棱柱嗎?若是,指出是幾棱柱.若不是棱柱,請你試用一個平面截去一部分,使剩余部分是一個棱長為2的三棱柱,并指出截去的幾何體的特征,在立體圖中畫出截面.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖⑴、⑵、⑶、⑷為四個幾何體的三視圖,根據三視圖可以判斷這四個幾何體依次分別為

A.三棱臺、三棱柱、圓錐、圓臺
B.三棱臺、三棱錐、圓錐、圓臺
C.三棱柱、正四棱錐、圓錐、圓臺
D.三棱柱、三棱臺、圓錐、圓臺

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設Sn是數列{an}的前n項和,已知a1=2,an+1=Sn+2.
(1)求數列{an}的通項公式.
(2)令bn=(2n﹣1)an , 求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數y=sin2x的圖象向左平移 個單位,再向上平移1個單位,所得圖象的函數解析式是( )
A.y=cos2x
B.y=2cos2x
C.
D.y=2sin2x

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查.下面是根據調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據已知條件完成上面的列聯表,若按的可靠性要求,并據此資料,你是否認為“體育迷”與性別有關?

(2)將上述調查所得到的頻率視為概率.現在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數為.若每次抽取的結果是相互獨立的,求分布列,期望和方差.

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在上的奇函數滿足, 為數列的前項和,且,則__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩位學生參加數學競賽培訓,現分別從他們在培訓期間參加的若干次預賽成績中隨機抽取8次,記錄如下:

82

81

79

78

95

88

93

84

92

95

80

75

83

80

90

85


(1)用莖葉圖表示這兩組數據;
(2)現要從中選派一人參加數學競賽,從統(tǒng)計學的角度(在平均數、方差或標準差中選兩個)考慮,你認為選派哪位學生參加合適?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=sin(ωx+φ)其中ω>0,|φ|<
(1)若cos cosφ﹣sin sinφ=0.求φ的值;
(2)在(1)的條件下,若函數f(x)的圖象的相鄰兩條對稱軸之間的距離等于 ,求函數f(x)的解析式;并求最小正實數m,使得函數f(x)的圖象象左平移m個單位所對應的函數是偶函數.

查看答案和解析>>

同步練習冊答案