設函數(shù)f(x)=(x2+2x-2)ex,求f(x)的極大值.
考點:利用導數(shù)研究函數(shù)的極值
專題:計算題,導數(shù)的綜合應用
分析:求導f′(x)=(x2+4x)ex,從而確定函數(shù)的單調(diào)性及極大值.
解答: 解:f(x)=(x2+2x-2)ex
f′(x)=(x2+4x)ex,
則當x<-4或x>0時,f′(x)>0,
當-4<x<0時,f′(x)<0;
故f(x)在x=-4時有極大值,
f(x)的極大值為f(-4)=
6
e4
點評:本題考查了導數(shù)在求極值時的應用,注意判斷單調(diào)性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若a=ln2,b=ln3,c=lg0.1,則a,b,c的大小順序是(  )
A、a>b>c
B、c>b>a
C、b>a>c
D、b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

y=x2-3x+2在∈[
1
2
,3]上的最小值與最大值分別為( 。
A、
3
4
,2
B、-
1
4
,2
C、-
1
4
3
4
D、
3
4
,3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=-
1
3
x3+2ax2-3a2x+b(0<a<1)
(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)當x=
1
2
時,f(x)有極小值
1
3
,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=Acos(ωx+φ)在一個周期內(nèi)的圖象如下,此函數(shù)的解析式為( 。
A、y=2cos(2x+
π
6
B、y=2cos(2x-
π
6
C、y=2cos(
x
2
-
π
3
D、y=2cos(2x+
π
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+x2-ax(a為常數(shù)).
(1)若x=1是函數(shù)f(x)的一個極值點,求a的值;
(2)若對任意的a∈(1,2)存在x0∈[1,2],使不等式f(x0)>mlna恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知二面角A-PC-B為直二面角,且PA⊥平面ABC,求證:△ABC為直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2000年世界人口為60億,目前世界人口增長率約為1.84%,如果這種趨勢保持不變,求哪一年人口將長到120億?(lg1.0184=0.0079,lg2=0.3010)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y2=|x|+1的部分圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習冊答案