如圖,過點(diǎn)的兩直線與拋物線相切于A、B兩點(diǎn), AD、BC垂直于直線,垂足分別為D、C.
(1)若,求矩形ABCD面積;
(2)若,求矩形ABCD面積的最大值.
(1)14 (2)
解析試題分析:(1)當(dāng)=1時,假設(shè)切線為y=kx+1,聯(lián)立.令判別式為零可求得k及切點(diǎn)坐標(biāo).即可求出面積.(2)假設(shè)切點(diǎn),對拋物線求導(dǎo)求出斜率寫出切線方程,代入定點(diǎn)(0, )求出切點(diǎn)坐標(biāo)(含).寫出面積的表達(dá)式.根據(jù)的范圍求出S的最大值.本題是常見的直線與拋物線的關(guān)系的題型.設(shè)切點(diǎn),聯(lián)立方程找出關(guān)于切點(diǎn)的等式.通過對參數(shù)的分類求出相應(yīng)的最大值.
試題解析:(1)時, (詳細(xì)過程見第(2)問) 6分
(2)設(shè)切點(diǎn)為,則,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ae/7/rjb5h1.png" style="vertical-align:middle;" />,所以切線方程為, 即,
因?yàn)榍芯過點(diǎn),所以,即,于是.
將代入得.
(若設(shè)切線方程為,代入拋物線方程后由得到切點(diǎn)坐標(biāo),亦予認(rèn)可.)
所以, 所以矩形面積為,
.
所以當(dāng)時,;當(dāng)時,;
故當(dāng)時,S有最大值為. 15分
考點(diǎn):1.直線與拋物線的關(guān)系.2.特殊到一般的思維方式.3.導(dǎo)數(shù)求最值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,以兩個焦點(diǎn)和短軸的兩個端點(diǎn)為頂點(diǎn)的四邊形是一個面積為的正方形(記為)
(Ⅰ)求橢圓的方程
(Ⅱ)設(shè)點(diǎn)是直線與軸的交點(diǎn),過點(diǎn)的直線與橢圓相交于兩點(diǎn),當(dāng)線段的中點(diǎn)落在正方形內(nèi)(包括邊界)時,求直線斜率的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓錐曲線的兩個焦點(diǎn)坐標(biāo)是,且離心率為;
(Ⅰ)求曲線的方程;
(Ⅱ)設(shè)曲線表示曲線的軸左邊部分,若直線與曲線相交于兩點(diǎn),求的取值范圍;
(Ⅲ)在條件(Ⅱ)下,如果,且曲線上存在點(diǎn),使,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為.
(1)求橢圓的方程;
(2)過右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,則內(nèi)切圓的圓面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在原點(diǎn),離心率,右焦點(diǎn)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的上頂點(diǎn)為,在橢圓上是否存在點(diǎn),使得向量與共線?若存在,求直線的方程;若不存在,簡要說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)(,是常數(shù)),且動點(diǎn)到軸的距離比到點(diǎn)的距離小.
(1)求動點(diǎn)的軌跡的方程;
(2)(i)已知點(diǎn),若曲線上存在不同兩點(diǎn)、滿足,求實(shí)數(shù)的取值范圍;
(ii)當(dāng)時,拋物線上是否存在異于、的點(diǎn),使得經(jīng)過、、三點(diǎn)的圓和拋物線在點(diǎn)處有相同的切線,若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的焦點(diǎn)為,,且經(jīng)過點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過的直線與橢圓交于、兩點(diǎn),問在橢圓上是否存在一點(diǎn),使四邊形為平行四邊形,若存在,求出直線的方程,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線,為坐標(biāo)原點(diǎn),動直線與
拋物線交于不同兩點(diǎn)
(1)求證:·為常數(shù);
(2)求滿足的點(diǎn)的軌跡方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,點(diǎn)分別是橢圓C:的左、右焦點(diǎn),過點(diǎn)作軸的垂線,交橢圓的上半部分于點(diǎn),過點(diǎn)作的垂線交直線于點(diǎn).
(1)如果點(diǎn)的坐標(biāo)為(4,4),求橢圓的方程;
(2)試判斷直線與橢圓的公共點(diǎn)個數(shù),并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com