精英家教網 > 高中數學 > 題目詳情
如圖,設拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點,過M引拋物線的切線,切點分別為A,B.
(Ⅰ)求證:A,M,B三點的橫坐標成等差數列;
(Ⅱ)已知當M點的坐標為(2,2p)時,,求此時拋物線的方程.

【答案】分析:(Ⅰ)設出A,B的坐標,對拋物線的方程進行求導,求得AM和BM的斜率,因此可表示出MA的直線方程和直線MB的方程,聯立求得2x=x1+x2.判斷出三者的橫坐標成等差數列.
(Ⅱ)由(Ⅰ)可求得x,代入橢圓和直線的方程整理求得x1+x2和x1x2的值,表示出直線AB的斜率,最后利用弦長公式建立等式求得p,則拋物線的方程可得.
解答:解:(Ⅰ)證明:由題意設
由x2=2py得,得,
所以,
因此直線MA的方程為,直線MB的方程為
所以,①.②
由①、②得,因此,即2x=x1+x2
所以A,M,B三點的橫坐標成等差數列.
(Ⅱ)解:由(Ⅰ)知,當x=2時,
將其代入①、②并整理得:x12-4x1-4p2=0,x22-4x2-4p2=0,所以x1,x2是方程x2-4x-4p2=0的兩根,
因此x1+x2=4,x1x2=-4p2,又,所以
由弦長公式得.又,
所以p=1或p=2,因此所求拋物線方程為x2=2y或x2=4y.
點評:本題主要考查了直線與圓錐曲線的綜合問題.注重了考生知識的靈活運用的能力和基本的計算的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,設拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點,過M引拋物線的切線,切點分別為A,B.
(Ⅰ)求證:A,M,B三點的橫坐標成等差數列;
(Ⅱ)已知當M點的坐標為(2,-2p)時,|AB|=4
10
.求此時拋物線的方程;
(Ⅲ)是否存在點M,使得點C關于直線AB的對稱點D在拋物線x2=2py(p>0)上,其中,點C滿足
OC
=
OA
+
OB
(O為坐標原點).若存在,求出所有適合題意的點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,設拋物線方程為x2=2py(p>0),M為直線y=-2p上任意一點,過M引拋物線的切線,切點分別為A,B.
(Ⅰ)求證:A,M,B三點的橫坐標成等差數列;
(Ⅱ)已知當M點的坐標為(2,2p)時,|AB|=4
10
,求此時拋物線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,設拋物線方程為x2=2py(p>0),M為直線l:y=-2p上任意一點,過M引拋物線的切線,切點分別為A、B.
(1)設拋物線上一點P到直線l的距離為d,F為焦點,當d-|PF|=
32
時,求拋物線方程;
(2)若M(2,-2),求線段AB的長;
(3)求M到直線AB的距離的最小值.

查看答案和解析>>

科目:高中數學 來源:2014屆河南省許昌市五校高二下學期第一次聯考文科數學試卷(解析版) 題型:解答題

如圖,設拋物線方程為為直線上任意一點,過引拋物線的切線,切點分別為

(1)求證:三點的橫坐標成等差數列;

(2)已知當點的坐標為時,.求此時拋物線的方程。

 

查看答案和解析>>

科目:高中數學 來源:四川省成都外國語學院高三2010-2011學年9月月考數學試題(理科) 題型:解答題

如圖,設拋物線方程為直線上任意一點,過M引拋物線的切線,切點分別為A,B。

(1)求證:AM,B三點的橫坐標成等差數列;

(2)已知當M點的坐標為時,,求此時拋物線的方程;

(3)是否存在點M,使得點C關于直線AB的對稱點D在拋物線上,其中,點C滿足O為坐標原點).若存在,求出所有適合題意的點M的坐標;若不存在,請說明理由.

 

查看答案和解析>>

同步練習冊答案