已知函數(shù)y=x2-2x+3在閉區(qū)間[0,m]上有最大值3,最小值2,m的取值范圍是(  )

(A)[1,+) (B)[0,2]

(C)[1,2] (D)(-,2]

 

C

【解析】y=(x-1)2+2,x2-2x+3=3x=0x=2,1m2,故選C.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)f(x)是定義在R上以2為周期的偶函數(shù),已知x(0,1)時(shí),f(x)=lo(1-x),則函數(shù)f(x)(1,2)(  )

(A)是增函數(shù),f(x)<0

(B)是增函數(shù),f(x)>0

(C)是減函數(shù),f(x)<0

(D)是減函數(shù),f(x)>0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(二)第一章第二節(jié)練習(xí)卷(解析版) 題型:解答題

已知集合A={y|y=x2-x+1,x[,2]},B={x|x+m21}.若“xA”是“xB”的充分條件,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(九)第二章第六節(jié)練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x)=3ax2+2bx+c,a+b+c=0,f(0)·f(1)>0.

(1)求證:-2<<-1.

(2)x1,x2是方程f(x)=0的兩個(gè)實(shí)根,|x1-x2|的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(九)第二章第六節(jié)練習(xí)卷(解析版) 題型:選擇題

對于任意a[-1,1],函數(shù)f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范圍是(  )

(A)(1,3) (B)(-,1)(3,+)

(C)(1,2) (D)(3,+)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(三)第一章第三節(jié)練習(xí)卷(解析版) 題型:填空題

已知條件p:x2-x6;q:xZ,當(dāng)xM時(shí),pq”與“q”同時(shí)為假命題,x取值組成的集合M=    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(三)第一章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

給出下列四個(gè)命題:

?α∈R,sinα+cosα>-1;

?α∈R,sinα+cosα=;

?α∈R,sinαcosα≤;

?α∈R,sinαcosα=.

其中正確命題的序號(hào)是(  )

(A)①② (B)①③ (C)③④ (D)②④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)(七)第二章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

已知函數(shù)g(x)=2x-,f(x)=則函數(shù)f(x)在定義域內(nèi)(  )

(A)有最小值,但無最大值

(B)有最大值,但無最小值

(C)既有最大值,又有最小值

(D)既無最大值,又無最小值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)四十六第七章第五節(jié)練習(xí)卷(解析版) 題型:解答題

如圖,在四棱錐P-ABCD,PA⊥底面ABCD,底面ABCD為梯形,ABDC,ABC=CAD=90°,PA=AB=BC,點(diǎn)E是棱PB上的動(dòng)點(diǎn).

(1)PD∥平面EAC,試確定點(diǎn)E在棱PB上的位置.

(2)(1)的條件下,求二面角A-CE-P的余弦值.

 

查看答案和解析>>

同步練習(xí)冊答案