(本小題滿分12分)

已知函數(shù)f(x)=lg(ax-bx)(a>1>b>0).

(1)求y=f(x)的定義域;

 (2)在函數(shù)y=f(x)的圖象上是否存在不同的兩點(diǎn),使得過(guò)這兩點(diǎn)的直線平行于x軸;

 (3)當(dāng)a,b滿足什么條件時(shí),f(x)在(1,+∞)上恒取正值.

 

【答案】

 

解:(1)由ax-bx>0得x>1,

∵a>1>b>0,∴>1,∴x>0.

∴f(x)的定義域是(0,+∞).                                  

(2)任取x1、x2∈(0,+∞)且x1>x2

∵a>1>b>0,∴ax1>ax2>1,bx1<bx2<1

∴ax1-bx1>ax2-bx2>0

∴l(xiāng)g(ax1-bx1)>lg(ax2-bx2)

故f(x1)>f(x2)

∴f(x)在(0,+∞)上為增函數(shù).

假設(shè)y=f(x)的圖象上存在不同的兩點(diǎn)A(x1,y1),B(x2,y2),使過(guò)A、B兩點(diǎn)的直線平行于x軸,則x1≠x2,y1=y(tǒng)2,這與f(x)是增函數(shù)矛盾.故函數(shù)y=f(x)的圖象上不存在不同兩點(diǎn),使過(guò)這兩點(diǎn)的直線平行于x軸.                                     

(3)∵f(x)是增函數(shù),∴當(dāng)x∈(1,+∞)時(shí),f(x)>f(1).

這樣只需f(1)≥0,即lg(a-b)≥0,

∴a-b≥1.

即當(dāng)a≥b+1時(shí),f(x)在(1,+∞)上恒取正值.

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案