在甲、乙兩個(gè)盒子中分別裝有編號(hào)為1,2,3,4的四個(gè)形狀相同的小球,現(xiàn)從甲、乙兩個(gè)盒子中各取出2個(gè)小球,每個(gè)小球被取出的可能性相等.
(1)求從甲盒中取出的兩個(gè)球上的編號(hào)不都是奇數(shù)的概率;
(2)求從甲盒取出的小球上編號(hào)之和與從乙盒中取出的小球上編號(hào)之和相等的概率.
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計(jì)
分析:(1)先求出基本事件總數(shù),然后記事件“甲盒中取出的兩個(gè)球上的編號(hào)不都是奇數(shù)”為事件A,列舉出事件A所包含的基本事件,最后根據(jù)古典概型的概率公式解之即可;
(2)記事件“從甲盒取出的小球上編號(hào)之和與從乙盒中取出的小球上編號(hào)之和相等”為事件B,列舉出事件B所包含的基本事件,最后根據(jù)古典概型的概率公式解之即可
解答: 解:由題意可知,從甲、乙兩個(gè)盒子中各取1個(gè)小球的基本事件總數(shù)為16.
(1)記“從甲盒中取出的兩個(gè)球上的編號(hào)不都是奇數(shù)”為事件A,由題意可知,從甲盒中取2個(gè)小球的基本事件總數(shù)為6,則事件A的基本事件有:
(1,2),(1,4),(2,3),(2,4),(3,4)共5個(gè).
P(A)=
5
6
,
(2)記“從甲盒取出的小球上編號(hào)之和與從乙盒中取出的小球上編號(hào)之和相等”為事件B,由題意可知,從甲、乙兩個(gè)盒子中各取2個(gè)小球的基本事件總數(shù)為36,
則事件B包含:(12,12),(13,13),(14,14),(14,23),(23,14),(23,23),(24,24)(34,34)共8個(gè)基本事件.
P(B)=
8
36
=
2
9
點(diǎn)評(píng):本題主要考查了等可能事件的概率,解題的關(guān)鍵是弄清基本事件的個(gè)數(shù)與所求事件所包含的基本事件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-1,2,4),
b
=(x,-1,-2),并且
a
b
,則實(shí)數(shù)x的值為( 。
A、10
B、-10
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,a,b,c分別是角A,B,C的對邊,且滿足4cosC+cos2C=4cosCcos2
C
2

(Ⅰ)求∠C的大。
(Ⅱ)若|
CA
-
1
2
CB
|=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋擲一枚質(zhì)地均勻的硬幣,如果連續(xù)拋擲500次,那么第499次出現(xiàn)正面朝上的概率是( 。
A、
1
499
B、
1
500
C、
499
500
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋擲一枚均勻的正方體骰子,點(diǎn)數(shù)為3的倍數(shù)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我國自從1979年實(shí)行計(jì)劃生育政策以來,“獨(dú)生子女”就作為一種特殊的群體存在于我國社會(huì)中,從理論研究的角度看,對“獨(dú)生子女”的研究橫跨和占據(jù)了多學(xué)科的領(lǐng)地,例如心理學(xué)、教育學(xué)、人口學(xué)和社會(huì)學(xué).某農(nóng)村高中心里咨詢室在研究獨(dú)生子女“偏執(zhí)”性格與獨(dú)生是否有關(guān)時(shí),從在校學(xué)生中抽樣調(diào)查50人,得到如下數(shù)據(jù):
  不偏執(zhí) 偏執(zhí)
 獨(dú)生子女 12 18
 非獨(dú)生子女 12 8
根據(jù)表中數(shù)據(jù),計(jì)算統(tǒng)計(jì)量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
≈1.9231,參考以下臨界數(shù)據(jù):
P(K2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83
可以得到性格偏執(zhí)與是否獨(dú)生有關(guān)的把握為
 
%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n表示不同的直線,α,β表示不同的平面,則下列命題中不正確的是( 。
A、m⊥α,n⊥α,則m∥n
B、m⊥α,α∥β,則m⊥β
C、m∥n,m⊥α,則n⊥α
D、m∥α,α∩β=n,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx+1與圓x2+y2+kx+my-4=0交于M,N兩點(diǎn),且M,N關(guān)于直線x+y=0對稱,則k+2m的值是( 。
A、-1B、0C、1D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1
2
x2+4x-3lnx在(t,t+1)不單調(diào),求t的范圍.

查看答案和解析>>

同步練習(xí)冊答案