【題目】在△ABC中,C> ,若函數(shù)y=f(x)在[0,1]上為單調(diào)遞減函數(shù),則下列命題正確的是(
A.f(cosA)>f(cosB)
B.f(sinA)>f(sinB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)

【答案】C
【解析】解:∵在△ABC中,C> , ∴0<A+B< ,即A與B都為銳角,且A< ﹣B,
則有sinA<sin( ﹣B)=cosB,cosA>cos( ﹣B)=sinB,
∵函數(shù)y=f(x)在[0,1]上為單調(diào)遞減函數(shù),
∴f(sinA)>f(cosB),f(cosA)<f(sinB),
故選:C.
【考點精析】本題主要考查了函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識點,需要掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cos2x的圖象向左平移 個單位后得到函數(shù)g(x)的圖象,若使|f(x1)﹣g(x2)|=2成立x1 , x2的滿足 ,則φ的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的連續(xù)函數(shù)f(x)滿足f(1)=2,且f(x)在R上的導(dǎo)函數(shù)f′(x)<1,則不等式f(x)<x+1的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD為菱形,E為棱PB的中點,O為AC與BD的交點,
(Ⅰ)證明:PD∥平面EAC
(Ⅱ)證明:平面EAC⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=sin2x的圖象經(jīng)過適當(dāng)變換可以得到y(tǒng)=cos2x的圖象,則這種變換可以是(
A.沿x軸向右平移 個單位
B.沿x軸向左平移 個單位
C.沿x軸向左平移 個單位
D.沿x軸向右平移 個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正三棱柱ABC﹣A1B1C1中,點D在邊BC上,AD⊥C1D.
(1)求證:平面ADC1⊥平面BCC1B1;
(2)如果點E是B1C1的中點,求證:AE∥平面ADC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn是數(shù)列{an}的前n項和,已知a1=3,an+1=2Sn+3(n∈N)
(I)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=(2n﹣1)an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(1,2), =(﹣3,2), 當(dāng)k=時,(1)k + ﹣3 垂直;
當(dāng)k=時,(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,運行相應(yīng)的程序,則輸出的結(jié)果為(
A.2
B.1
C.0
D.﹣1

查看答案和解析>>

同步練習(xí)冊答案