【題目】如圖,在四棱錐中,四邊形是菱形,交BD于點,是邊長為2的正三角形,分別是的中點.

(1)求證:EF//平面SAD;

(2)求直線與平面所成角的正弦值.

【答案】(1)見解析;(2).

【解析】試題分析:(1)取中點為,根據(jù)平幾知識得為平行四邊形,即得,再根據(jù)線面平行判定定理得結(jié)論,(2)根據(jù)菱形以及正三角形性質(zhì)得.根據(jù)線面垂直判定定理得平面.根據(jù)面面垂直判定定理得平面平面根據(jù)面面垂直性質(zhì)定理得平面就是與平面所成的角.最后根據(jù)解直角三角形得結(jié)果.

試題解析:(1)證明:記得中點為,連接,,

因為分別是的中點.所以

,所以

,四邊形為平行四邊形,所以,

所以平面.

(2)連接是邊長為 2 的正三角形,中點,.

由四邊形是菱形知.

平面.過,連接.因為平面平面平面就是在平面上的射影,就是與平面所成的角.

四邊形是菱形,是正三角形,

,又是正三角形.

的中點,.

是直角三角形,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式的解集為,且中只有一個整數(shù),則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上是單調(diào)函數(shù).

1)求實數(shù)的所有取值組成的集合;

2)試寫出在區(qū)間上的最大值

3)設(shè),令,若對任意,總有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于四面體,有以下命題:①若AB=AC=AD,則AB,AC,AD與底面所成的角相等;②若AB⊥CD,AC⊥BD,則點A在底面BCD內(nèi)的射影是△BCD的內(nèi)心;③四面體的四個面中最多有四個直角三角形;④若四面體的6條棱長都為1,則它的內(nèi)切球的表面積為,其中正確的命題是

A. ①③ B. ③④ C. ①②③ D. ①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, ,的中點,.

(Ⅰ)證明:⊥平面

(Ⅱ)求二面角的大。

(Ⅲ)線段上是否存在一點,使得直線平面. 若存在,確定點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:

映射不一定是函數(shù),但函數(shù)一定是其定義域到值域的映射;

函數(shù)的反函數(shù)是,則

函數(shù)的最小值是;

對于函數(shù),則既是奇函數(shù)又是偶函數(shù).

其中所有正確命題的序號是( ).

A.①③B.②③C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知、兩個城鎮(zhèn)相距20公里,設(shè)中點,在的中垂線上有一高鐵站的距離為10公里.為方便居民出行,在線段上任取一點(點、不重合)建設(shè)交通樞紐,從高鐵站鋪設(shè)快速路到處,再鋪設(shè)快速路分別到兩處.因地質(zhì)條件等各種因素,其中快速路造價為1.5百萬元/公里,快速路造價為1百萬元/公里,快速路造價為2百萬元/公里,設(shè),總造價為(單位:百萬元).

(1)求關(guān)于的函數(shù)關(guān)系式,并指出函數(shù)的定義域;

(2)求總造價的最小值,并求出此時的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時,求的極值;

(2)當(dāng)時,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年是中國改革開放40周年,改革開放40年來,從開啟新時期到跨入新世紀(jì),從站上新起點到進人新時代,我們黨引領(lǐng)人民繪就了一幅波瀾壯闊、氣勢恢宏的歷史畫卷,譜寫了一曲感天動地、氣壯山河的奮斗贊歌,40年來我們始終堅持保護環(huán)境和節(jié)約資源,堅持推進生態(tài)文明建設(shè),鄭州市政府也越來越重視生態(tài)系統(tǒng)的重建和維護,若市財政下?lián)芤豁棇??00百萬元,分別用于植綠護綠和處理污染兩個生態(tài)維護項目,植綠護綠項目五年內(nèi)帶來的生態(tài)收益可表示為投放資金x(單位:百萬元)的函數(shù)M(x(單位:百萬元):,處理污染項目五年內(nèi)帶來的生態(tài)收益可表示為投放資金x(單位:百萬元)的函數(shù)N(x)(單位:百萬元):.

(Ⅰ)設(shè)分配給植綠護綠項目的資金為x(百萬元),則兩個生態(tài)項目五年內(nèi)帶來的收益總和為y,寫出y關(guān)于x的函數(shù)解析式和定義域。

(Ⅱ)生態(tài)項目的投資開始利潤薄弱,只有持之以恒,才能功在當(dāng)代,利在千秋,試求出y的最大值,并求出此時對兩個生態(tài)項目的投資分別為多少?

查看答案和解析>>

同步練習(xí)冊答案