15.命題“數(shù)列{an}前n項和是Sn=An2+Bn+C的形式,則數(shù)列{an}為等差數(shù)列”的逆命題,否命題,逆否命題這三個命題中,真命題的個數(shù)為( 。
A.0B.1C.2D.3

分析 根據等差數(shù)列的前n項和是Sn=$\fraci0om6q0{2}$n2+(a1-$\fracdgqj3zq{2}$)n的形式,逐一分析原命題的逆命題,否命題,逆否命題的真假,可得答案.

解答 解:命題“數(shù)列{an}前n項和是Sn=An2+Bn+C的形式,則數(shù)列{an}為等差數(shù)列”是假命題,
故逆否命題也是假命題;
逆命題“若數(shù)列{an}為等差數(shù)列,則數(shù)列{an}前n項和是Sn=An2+Bn+C的形式”為真命題,
故否命題也是真命題,
故選:C

點評 本題以命題的真假判斷應用為載體,考查了四種命題,等差數(shù)列的性質等知識點,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.設函數(shù)f(x)的定義域為D,若存在閉區(qū)間[a,b]⊆D,使得函數(shù)f(x)滿足:
①f(x)在[a,b]上是單調函數(shù);
②f(x)在[a,b]上的值域是[2a,2b],則稱區(qū)間[a,b]是函數(shù)f(x)的“和諧區(qū)間”.
下列結論錯誤的是(  )
A.函數(shù)f(x)=x2(x≥0)存在“和諧區(qū)間”B.函數(shù)f(x)=2x(x∈R)存在“和諧區(qū)間”
C.函數(shù)f(x)=$\frac{1}{{x}^{2}}$(x>0)不存在“和諧區(qū)間”D.函數(shù)f(x)=log2x(x>0)存在“和諧區(qū)間”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[0,3]上單調遞增,在區(qū)間[3,+∞)上單調遞減,且滿足f(-4)=f(1)=0,則不等式f(x)<0的解集是(  )
A.(-4,-1)∪(1,4)B.(-∞,-4)∪(-1,1)∪(4,+∞)C.(-∞,-4)∪(-1,0)∪(1,4)D.(-4,-1)∪(0,1)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知i是虛數(shù)單位,復數(shù)z=$\frac{1}{a-i}$(a∈R)在復平面內對應的點位于直線x+2y=0上,則a=(  )
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在平面直角坐標系中,已知動點T到點A(-4,0),B(-1,0)的距離比為2.
(1)求動點T的軌跡方程Γ;
(2)已知點P是直線l:y=x與曲線Γ在第一象限內的交點,過點P引兩條直線分別交曲線Γ于Q,R,且直線PQ,PR的傾斜角互補,試判斷直線QR的斜率是否為定值,若是定值,請求出這個定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設a<1,集合A={x∈R|x>0},B={x∈R|2x2-3(1+a)x+6a>0},D=A∩B.
(Ⅰ)求集合D(用區(qū)間表示);
(Ⅱ)求函數(shù)f(x)=x2-(1+a)x+a在D內的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知數(shù)列{an}滿足a1=8,an+1-an=n(n∈N*),則$\frac{a_n}{n}$取最小值時n=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.若函數(shù)f(x)的定義域為[2,5],則函數(shù)f(|x+3|)的定義域為[-8,-5]∪[-1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.數(shù)列{an}的前n項和為Sn,且Sn=$\frac{1}{3}$(an-1).
(1)證明:數(shù)列{an}是等比數(shù)列;  
(2)求an及Sn

查看答案和解析>>

同步練習冊答案