【題目】已知等差數(shù)列{an}的首項(xiàng)a1=2,前n項(xiàng)和為Sn , 等比數(shù)列{bn}的首項(xiàng)b1=1,且a2=b3 , S3=6b2 , n∈N*
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=bn+(﹣1)nan , 記數(shù)列{cn}的前n項(xiàng)和為Tn , 求Tn

【答案】
(1)解:設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q.

∵a1=2,b1=1,且a2=b3,S3=6b2,n∈N*

∴2+d=q2,3×2+ =6q,

聯(lián)立解得d=q=2.

∴an=2+2(n﹣1)=2n,bn=2n1


(2)解:cn=bn+(﹣1)nan=2n1+(﹣1)n2n.

∴數(shù)列{cn}的前n項(xiàng)和為Tn=1+2+22+…+2n1+[﹣2+4﹣6+8+…+(﹣1)n2n]= +[﹣2+4﹣6+8+…+(﹣1)n2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n].

∴n為偶數(shù)時(shí),Tn=2n﹣1+[(﹣2+4)+(﹣6+8)+…+(﹣2n+2+2n)].

=2n﹣1+n.

n為奇數(shù)時(shí),Tn=2n﹣1+ ﹣2n.

=2n﹣2﹣n.

∴Tn=


【解析】(1)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q.根據(jù)a1=2,b1=1,且a2=b3,S3=6b2,n∈N*

可得2+d=q2,3×2+ =6q,聯(lián)立解得d,q.即可得出.(2)cn=bn+(﹣1)nan=2n1+(﹣1)n2n.可得數(shù)列{cn}的前n項(xiàng)和為Tn=1+2+22+…+2n1+[﹣2+4﹣6+8+…+(﹣1)n2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n].對(duì)n分類討論即可得出.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某程序框圖如圖所示,則該程序運(yùn)行后輸出的S的值為(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校有甲、乙兩個(gè)實(shí)驗(yàn)班,為了了解班級(jí)成績(jī),采用分層抽樣的方法從甲、乙兩個(gè)班學(xué)生中分別抽取8名和6名測(cè)試他們的數(shù)學(xué)成績(jī)與英語(yǔ)成績(jī)(單位:分),用表示(m,n).下面是乙班6名學(xué)生的測(cè)試分?jǐn)?shù):A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(xiàn)(134,132),當(dāng)學(xué)生的數(shù)學(xué)、英語(yǔ)成績(jī)滿足m≥135,且n≥130時(shí),該學(xué)生定為優(yōu)秀學(xué)生.
(1)已知甲班共有80名學(xué)生,用上述樣本數(shù)據(jù)估計(jì)乙班優(yōu)秀生的數(shù)量;
(2)從乙班抽出的上述6名學(xué)生中隨機(jī)抽取3名,求至少有兩名優(yōu)秀生的概率;
(3)從乙班抽出的上述6名學(xué)生中隨機(jī)抽取2名,其中優(yōu)秀生數(shù)記為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足: + +…+ = (n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=anan+1 , Sn為數(shù)列{bn}的前n項(xiàng)和,對(duì)于任意的正整數(shù)n,Sn>2λ﹣ 恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C1與雙曲線C2有相同的左右焦點(diǎn)F1、F2 , P為橢圓C1與雙曲線C2在第一象限內(nèi)的一個(gè)公共點(diǎn),設(shè)橢圓C1與雙曲線C2的離心率為e1 , e2 , 且 = ,若∠F1PF2= ,則雙曲線C2的漸近線方程為(
A.x±y=0
B.x± y=0
C.x± y=0
D.x±2y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)(a,b)是區(qū)域 內(nèi)的任意一點(diǎn),則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線xy10被圓(x1)2y23截得的弦長(zhǎng)等于(  )

A. B. 2

C. 2 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1Cl中,M,N分別為CC1 , A1B1的中點(diǎn).
(I)證明:直線MN∥平面CAB1;
(II)BA=BC=BB1 , CA=CB1 , CA⊥CB1 , ∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題
(Ⅰ)討論函數(shù)f(x)= ex的單調(diào)性,并證明當(dāng)x>0時(shí),(x﹣2)ex+x+2>0;
(Ⅱ)證明:當(dāng)a∈[0,1)時(shí),函數(shù)g(x)= (x>0)有最小值.設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案