16.在平面直角坐標(biāo)系xOy中,已知點A(x1,y1)在曲線C1:y=x2-lnx上,點B(x2,y2)在直線x-y-2=0上,則${{(x}_{2}{-x}_{1})}^{2}$+${{(y}_{2}{-y}_{1})}^{2}$的最小值為2.

分析 求出曲線C1:y=x2-lnx與直線x-y-2=0平行的切線的方程,即可得出結(jié)論.

解答 解:∵y=x2-lnx,∴y′=2x-$\frac{1}{x}$(x>0),
由2x-$\frac{1}{x}$=1,可得x=1,此時y=1,
∴曲線C1:y=x2-lnx在(1,1)處的切線方程為y-1=x-1,即x-y=0,
與直線x-y-2=0的距離為$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,
∴${{(x}_{2}{-x}_{1})}^{2}$+${{(y}_{2}{-y}_{1})}^{2}$的最小值為2.
故答案為2.

點評 本題考查兩點間距離的計算,考查導(dǎo)數(shù)知識的運用,求出曲線C1:y=x2-lnx與直線x-y-2=0平行的切線的方程是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某農(nóng)場在同一塊實驗田中種植的某種農(nóng)作物,連續(xù)8年的畝產(chǎn)量如下:(單位:kg)
450  430  460  440  450  440  470  460
則其方差為( 。
A.120B.80C.15D.150

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,離心率為e=$\frac{\sqrt{2}}{2}$,右準(zhǔn)線L上兩動點M,N,F(xiàn)2為△F1MN的垂心.
(1)若|F1M|=|F2N|=2$\sqrt{5}$,求a,b的值;
(2)若$\overrightarrow{{F}_{1}M}$+$\overrightarrow{{F}_{2}N}$與$\overrightarrow{{F}_{1}{F}_{2}}$共線,求|$\overrightarrow{MN}$|的值(用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在直角坐標(biāo)系xOy,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程式ρ=-4cosθ,則圓C的圓心到直線l的距離為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為Sn,且Sn=ln(n+1)-a.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)${b_n}={e^{a_n}}$(e為自然對數(shù)的底數(shù)),定義:$\sum_{k=1}^n{{b_k}={b_1}•{b_2}•{b_3}•…•{b_n}}$,求$\sum_{k=1}^n{b_k}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是( 。
(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式V=$\frac{1}{3}({S_上}+\sqrt{{S_上}{S_下}}+{S_下})•h$)
A.2寸B.3寸C.4寸D.5寸

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=alnx-x+$\frac{1}{x}$,其中a>0
(Ⅰ)若f(x)在(2,+∞)上存在極值點,求a的取值范圍;
(Ⅱ)設(shè)x1∈(0,1),x2∈(1,+∞),若f(x2)-f(x1)存在最大值,記為M(a).則a≤e+$\frac{1}{e}$時,M(a)是否存在最大值?若存在,求出最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD=$\frac{1}{2}$CD=1.
(1)若M為PA中點,求證:AC∥平面MDE;
(2)若平面PAD與PBC所成的銳二面角的大小為$\frac{π}{3}$,求線段PD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點A(-$\sqrt{3}$,1),斜率為$\sqrt{3}$的直線l1過橢圓C的焦點及點B(0,-2$\sqrt{3}$).
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線l2過橢圓C的左焦點F,交橢圓C于點P、Q,若直線l2與兩坐標(biāo)軸都不垂直,試問x軸上是否存在一點M,使得MF恰為∠PMQ的角平分線?若存在,求點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案