(08年長(zhǎng)沙市模擬文)(13分) 已知函數(shù)f(x)=ax3+bx2-3x在處取得極值。
(1)求函數(shù)f(x)的解析式;
(2)求證:對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2,都有;
(3)若過(guò)點(diǎn)A(1,m)(m?-2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍。
解析:(1),依題意,,
即,解得 3分
(2)
當(dāng)-1<x<1時(shí),,故f(x)在區(qū)間[-1,1]上為減函數(shù),
∵對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2,
都有
7分
(3),
∵曲線方程為y=x3-3x,∴點(diǎn)A(1,m)不在曲線上,
設(shè)切點(diǎn)為M(x0,y0),則點(diǎn)M的坐標(biāo)滿足。
因,故切線的斜率為,
整理得。
∵過(guò)點(diǎn)A(1,m)可作曲線的三條切線,
∴關(guān)于x0方程有三個(gè)實(shí)根。 9分
設(shè),則,
由,得x0=0或x0=1。
在上單調(diào)遞增,在(0,1)上單調(diào)遞減。
∴函數(shù)的極值點(diǎn)為x0=0,x0=1
∴關(guān)于x0方程有三個(gè)實(shí)根的充要條件是
,解得-3<m<-2。
故所求的實(shí)數(shù)a的取值范圍是-3<m<-2!13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年長(zhǎng)沙市模擬文)(13分)已知定點(diǎn)A(1,0)和定直線x=-1,動(dòng)點(diǎn)E是定直線x=-1上的任意一點(diǎn),線段EA的垂直平分線為l,設(shè)過(guò)點(diǎn)E且與直線x=-1垂直的直線與l的交點(diǎn)為P。
(1)求點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)B(0,2)的直線m與(1)中的軌跡C相交于兩個(gè)不同的點(diǎn)M、N,若為鈍角,求直線m的斜率k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年長(zhǎng)沙市模擬文)(13分) 設(shè)數(shù)列 {an}的前n項(xiàng)和為Sn,a1=10,an+1=9Sn+10。
(1)求證:{lgan}是等差數(shù)列;
(2)設(shè)Tn是數(shù)列的前n項(xiàng)和,求使對(duì)所有的都成立的最大正整數(shù)m的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年長(zhǎng)沙市模擬文)(12分)在中,角A、B、C所對(duì)的邊分別為a、b、,且與共線。
(1)求角B的大小;
(2)設(shè),求y的最大值及此時(shí)的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年長(zhǎng)沙市模擬文)設(shè)實(shí)數(shù)x,y滿足:則的最大值是_____________;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com