我們把形如y (a>0b>0)的函數(shù)因其圖象類似于漢字中的字,故生動地稱為囧函數(shù),若當(dāng)a1,b1時的囧函數(shù)與函數(shù)ylg|x|的交點(diǎn)個數(shù)為n,則n________.

 

4

【解析】由題意知,當(dāng)a1b1時,y在同一坐標(biāo)系中畫出函數(shù)與函數(shù)ylg|x|的圖象如圖所示,

易知它們有4個交點(diǎn). ?.

 

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練優(yōu)化重組卷1練習(xí)卷(解析版) 題型:選擇題

已知隨機(jī)變量XN(1,4)P(X<2)0.72,則P(1<X<2)等于(  )

A0.36 B0.16 C0.22 D0.28

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練5練習(xí)卷(解析版) 題型:選擇題

已知f(x)是定義在(0,+∞) 上的非負(fù)可導(dǎo)函數(shù),且滿足xf′(x)f(x)≤0,對任意的0<a<b,則必有(  )

Aaf(b)≤bf(a) Bbf(a)≤af(b)

Caf(a)≤f(b) Dbf(b)≤f(a)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練3練習(xí)卷(解析版) 題型:解答題

已知函數(shù)f(x).

(1)f(x)>k的解集為{x|x<3,或x>2},求k的值;

(2)對任意x>0,f(x)≤t恒成立,求t的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練3練習(xí)卷(解析版) 題型:選擇題

已知全集為R,集合AB,則ARB等于(  )

A{x|x≤0}

B{x|2≤x≤4}

C{x|0≤x<2,或x>4}

D{x|0<x≤2,或x≥4}

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練2練習(xí)卷(解析版) 題型:選擇題

函數(shù)f(x)xsin x在區(qū)間[0,2π]上的零點(diǎn)個數(shù)為(  )

A1 B2 C3 D4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練1練習(xí)卷(解析版) 題型:填空題

已知函數(shù)f(x)x3x,對任意的m[2,2],f(mx2)f(x)<0恒成立,則x的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)6-2橢圓、雙曲線、拋物線練習(xí)卷(解析版) 題型:解答題

已知橢圓C1(ab0)的離心率為,其左、右焦點(diǎn)分別是F1F2,過點(diǎn)F1的直線l交橢圓CE、G兩點(diǎn),且EGF2的周長為4.

(1)求橢圓C的方程;

(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A、B,設(shè)P為橢圓上一點(diǎn),且滿足t (O為坐標(biāo)原點(diǎn)),當(dāng)||時,求實(shí)數(shù)t的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-2數(shù)列求和與數(shù)列的綜合應(yīng)用練習(xí)卷(解析版) 題型:填空題

[x]為不超過實(shí)數(shù)x的最大整數(shù).例如,[2]2,[1.5]1,[0.3]=-1.設(shè)a為正整數(shù),數(shù)列{xn}滿足x1a,xn1 (nN*).現(xiàn)有下列命題:

當(dāng)a5時,數(shù)列{xn}的前3項(xiàng)依次為5,3,1

對數(shù)列{xn}都存在正整數(shù)k,當(dāng)nk時總有xnxk;

當(dāng)n≥1時,xn1

對某個正整數(shù)k,若xk1xk,則xk[]

其中的真命題有________(寫出所有真命題的編號)

 

查看答案和解析>>

同步練習(xí)冊答案