已知
a
=(
3
cosx,sinx),
b
=(sinx,
3
cosx)
,函數(shù)f(x)=
a
a
+
a
b

(1)求函數(shù)f(x)的最小正周期;
(2)已知f(
α
2
)=3
,且α∈(0,π),求α的值.
考點:三角函數(shù)中的恒等變換應(yīng)用,平面向量數(shù)量積的運算
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì),平面向量及應(yīng)用
分析:(1)首先根據(jù)已知條件,利用向量的坐標(biāo)運算,分別求出向量的數(shù)量積和向量的模,進(jìn)一步把函數(shù)的關(guān)系式通過三角恒等變換,把函數(shù)關(guān)系式變形成正弦型函數(shù),進(jìn)一步求出函數(shù)的最小正周期.
(2)利用(1)的函數(shù)關(guān)系式,根據(jù)定義域的取值范圍.進(jìn)一步求出角的大小.
解答: 解:(1)已知:
a
=(
3
cosx,sinx),
b
=(sinx,
3
cosx)

則:f(x)=
a
a
+
a
b

=3cos2x+sin2x+2
3
sinxcosx

=
3
sin2x+cos2x+2

=2sin(2x+
π
6
)+2

所以:函數(shù)的最小正周期為:T=
2
…(2分)…(4分)
(2)由于f(x)=2sin(2x+
π
6
)+2

所以f(
α
2
)=3

解得:2sin(α+
π
6
)+2=3

所以:sin(α+
π
6
)=
1
2
…(6分)
因為:α∈(0,π),
所以:α+
π
6
∈(
π
6
,
6
)

則:α+
π
6
=
6

解得:α=
3
點評:本題考查的知識要點:三角函數(shù)關(guān)系式的恒等變換,向量的坐標(biāo)運算,正弦型函數(shù)的性質(zhì)的應(yīng)用,利用三角函數(shù)的定義域求角的大。畬儆诨A(chǔ)題型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

化簡
cos(π-α)tanα
sin(π+α)
的結(jié)果是(  )
A、sinαB、-cosα
C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a∈R,z1=
a2-a-6
,z2=
5+4a-a2
,a為何值時,z1與z2可以比較大?a為何值時,z1與z2不可以比較大小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
cos2ωx+sinωxcosωx(ω>0)的最小正周期為π.
(Ⅰ)求f(
π
6
)的值;
(Ⅱ)求f(x)在閉區(qū)間[-
π
3
,
π
3
]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,左頂點為上頂點為B,△BF1F2是等邊三角形,橢圓C上的點到F1的距離的最大值為3.
(1)求橢圓C的方程;
(2)過F1任意作一條直線l交橢圓C于M、N兩點(均不是橢圓的頂點),設(shè)直線AM與直線l0x=-4交于P點,直線AN與l0交于Q點,請判斷點F1與以線段PQ為直徑的圓 的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

斜率為k(k≠0)的兩條直線分別切函數(shù)f(x)=x3+(t-1)x2-1的圖象于A、B兩點,若直線AB的方程為y=2x-1,則t+k的值為( 。
A、8B、7C、6D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上頂點為A,P(
4
3
,
b
3
)是C上的一點,以AP為直徑的圓經(jīng)過橢圓C的右焦點F
(1)求橢圓C的方程;
(2)動直線l與橢圓C有且只有一個公共點,問:在x軸上是否存在兩個定點,它們到直線l的距離之積等于1?如果存在,求出這兩個定點的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos
ωx+φ
2
(sin
ωx+φ
2
+cos
ωx+φ
2
 )-1(ω>0,0<φ<π)是奇函數(shù),且函數(shù)y=f(x)的圖象上的兩條相鄰對稱軸的距離是
π
2

(Ⅰ)求φ,ω的值;
(2)令g(x)=f(
π
6
-x),求函數(shù)g(x)在[0,
π
2
]是的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=3cos(2x-
π
3
),x∈R的單調(diào)區(qū)間,并求出對稱軸和對稱中心.

查看答案和解析>>

同步練習(xí)冊答案