若P為雙曲線
x2
25
-
y2
24
=1
右支上一個(gè)動(dòng)點(diǎn),F(xiàn)為雙曲線的左焦點(diǎn),M為PF的中點(diǎn),O為坐標(biāo)原點(diǎn),則|OM|的取值范圍為( 。
A、[0,+∞]
B、[2,+∞]
C、[
1
2
,+∞]
D、[1+∞]
分析:當(dāng)點(diǎn)P是雙曲線的右焦點(diǎn)時(shí),即P點(diǎn)坐標(biāo)是(5,0)時(shí),|OM|取最小值,由此可以求出|OM|的最小值.因?yàn)殡p曲線可以無(wú)限伸展,所以|OM|的最大值是+∞.
解答:解:當(dāng)點(diǎn)P是雙曲線的右焦點(diǎn)時(shí),
即P點(diǎn)坐標(biāo)是(5,0)時(shí),|OM|取最小值,
此時(shí)M是F(-7,0)和P(5,0)的中點(diǎn),∴M(-1,0).
所以|OM|的最小值為1.
∵雙曲線可以無(wú)限伸展,∴|OM|的最大值是+∞.
故選D.
點(diǎn)評(píng):本題考查雙曲線的性質(zhì)和應(yīng)用,解題時(shí)要熟練掌握雙曲線的基本性質(zhì),結(jié)合題設(shè)條件仔細(xì)求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)命題中:
①“若x2+y2≠0,則x,y全不為零”的否命題;
②若A、B、C三點(diǎn)不共線,對(duì)平面ABC外的任一點(diǎn)O,有
OM
=
1
3
AO
+
1
3
OB
+
1
3
OC
,則點(diǎn)M與點(diǎn)A、B、C共面;
③若雙曲線
x2
9
-
y2
16
=1的兩焦點(diǎn)為F1、F2,點(diǎn)P為雙曲線上一點(diǎn),且
PF1
PF2
=0,則△PF1F2的面積為16;
④曲線
x2
25
+
y2
9
=1與曲線
x2
9-k
+
y2
25-k
=1(0<k<9)有相同的焦點(diǎn);
其中真命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P為橢圓
x2
25
+
y2
12
=1
上的一點(diǎn),F(xiàn)1,F(xiàn)2是該雙曲線的兩個(gè)焦點(diǎn),若|PF1|:|PF2|=3:2,則△PF1F2的面積為
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

以下四個(gè)命題中:
①“若x2+y2≠0,則x,y全不為零”的否命題;
②若A、B、C三點(diǎn)不共線,對(duì)平面ABC外的任一點(diǎn)O,有
OM
=
1
3
AO
+
1
3
OB
+
1
3
OC
,則點(diǎn)M與點(diǎn)A、B、C共面;
③若雙曲線
x2
9
-
y2
16
=1的兩焦點(diǎn)為F1、F2,點(diǎn)P為雙曲線上一點(diǎn),且
PF1
PF2
=0,則△PF1F2的面積為16;
④曲線
x2
25
+
y2
9
=1與曲線
x2
9-k
+
y2
25-k
=1(0<k<9)有相同的焦點(diǎn);
其中真命題的序號(hào)為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)P為橢圓
x2
25
+
y2
12
=1
上的一點(diǎn),F(xiàn)1,F(xiàn)2是該雙曲線的兩個(gè)焦點(diǎn),若|PF1|:|PF2|=3:2,則△PF1F2的面積為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案