【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線的左焦點在直線

1若直線與曲線交于兩點,求的值;

2求曲線的內(nèi)接矩形的周長的最大值

【答案】12;216

【解析】

試題分析:1首先求出曲線的普通方程和焦點坐標(biāo),然后將直線的參數(shù)方程代入曲線的普通方程,利用根與系數(shù)的關(guān)系和參數(shù)的幾何意義,即可得到結(jié)果;2首先根據(jù)橢圓參數(shù)方程設(shè)出動點的坐標(biāo),然后將矩形周長用三角函數(shù)表示出,再利用三角函數(shù)的有界性求解

試題解析:1已知曲線的標(biāo)準(zhǔn)方程為,則其左焦點為,則,

將直線的參數(shù)方程與曲線的方程聯(lián)立,

,則………………5分

2由曲線的方程為,可設(shè)曲線上的動點,

則以為頂點的內(nèi)接矩形周長為

因此該內(nèi)接矩形周長的最大值為16………………10分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,點是圓上的任意一點,線段的垂直平分線與直線交于點

求點的軌跡方程

若直線與點的軌跡有兩個不同的交點,且原點總在以為直徑的圓的內(nèi)部,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足:對于任意時,,

(1)若,求證:為等比數(shù)列;

(2)若

求數(shù)列的通項公式;

是否存在,使得為數(shù)列中的項?若存在,求出所有滿足條件的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以Ox軸為始邊作兩個銳角α,β,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標(biāo)分別為.求:

(1)tan(α+β)的值;

(2)α+2β的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列中,,點)在直線y = x上,

(Ⅰ)計算a2,a3,a4的值;

(Ⅱ)令bn=an+1﹣an﹣1,求證:數(shù)列{bn}是等比數(shù)列;

(Ⅲ)設(shè)Sn、Tn分別為數(shù)列{an}、{bn}的前n項和,是否存在實數(shù)λ,使得數(shù)列為等差數(shù)列?若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)滿足fx+y=fx+fy),當(dāng)x0時,有,且f1=﹣2

1)求f0)及f﹣1)的值;

2)判斷函數(shù)fx)的單調(diào)性,并利用定義加以證明;

3)求解不等式f2x﹣fx2+3x)<4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,點分別為線段的中點.

(1)求證:平面;

(2)若在邊上,,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).

x

3

4

5

6

y

2.5

3

4

4.5

(1)請畫出上表數(shù)據(jù)的散點圖.

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤.

(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左右焦點分別為,,點滿足

() 求橢圓的離心率;

() 設(shè)直線與橢圓相交于兩點,若直線與圓相交于,兩點,且,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案