【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù).

(Ⅰ)若為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅱ)當(dāng)存在極小值時(shí),設(shè)極小值點(diǎn)為,求證:

【答案】(Ⅰ)(Ⅱ)見(jiàn)解析

【解析】

(Ⅰ)由,可令,然后,,然后通過(guò)討論的單調(diào)性,進(jìn)而可以求出的最小值,又由為單調(diào)遞增函數(shù),即可求解.

(Ⅱ)利用導(dǎo)數(shù)的方法可得出,當(dāng)時(shí),①,利用,得②,然后,利用①和②可得,,進(jìn)而令函數(shù),利用的單調(diào)性,即可求證.

解:(Ⅰ)由題意知,

為增函數(shù)可知恒成立.

設(shè),,

,

當(dāng)時(shí),,單調(diào)遞減,即單調(diào)遞減;

當(dāng)時(shí),,單調(diào)遞增,即單調(diào)遞增.

,又由為單調(diào)遞增函數(shù),則恒成立,因此,,所以,

經(jīng)檢驗(yàn),當(dāng)時(shí),滿足題意.

(Ⅱ)由(Ⅰ)知時(shí),

又因?yàn)?/span>,,且上單調(diào)遞減,

所以存在使得,,

,

當(dāng)時(shí),,單調(diào)遞增,

,

上單調(diào)遞增,故存在使得

因此有上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,

,,利用

代入消去,

函數(shù)的對(duì)稱軸為,

上單調(diào)遞減,

因此,即成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθ+sinθ)=8

1)求曲線C和直線l的直角坐標(biāo)方程;

2)若射線m的極坐標(biāo)方程為θρ≥0),設(shè)mC相交于點(diǎn)M(非坐標(biāo)原點(diǎn)),ml相交于點(diǎn)N,點(diǎn)P60),求△PMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了積極穩(wěn)妥疫情期間的復(fù)學(xué)工作,市教育局抽調(diào)5名機(jī)關(guān)工作人員去某街道3所不同的學(xué)校開展駐點(diǎn)服務(wù),每個(gè)學(xué)校至少去1人,若甲、乙兩人不能去同一所學(xué)校,則不同的分配方法種數(shù)為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)).

(Ⅰ)求直線的直角坐標(biāo)方程和曲線的普通方程;

(Ⅱ)求曲線上的動(dòng)點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù).

(Ⅰ)若為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;

(Ⅱ)當(dāng)存在極小值時(shí),設(shè)極小值點(diǎn)為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)設(shè),當(dāng)時(shí),判斷是否存在使得,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)滿足,若的最大值為,最小值為,則實(shí)數(shù)的取值范圍是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓和圓,為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,當(dāng)直線與圓相切時(shí),.

(Ⅰ)求的方程;

(Ⅱ)直線軸交于點(diǎn),且與橢圓和圓都相切,切點(diǎn)分別為,,記的積分別為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),常數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

1)寫出及直線的直角坐標(biāo)方程,并指出是什么曲線;

2)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),求點(diǎn)到直線的距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案