9.若tanα=3,則${cos^2}({α+\frac{π}{4}})-{cos^2}({α-\frac{π}{4}})$=( 。
A.$-\frac{3}{5}$B.$-\frac{4}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 利用誘導(dǎo)公式、倍角公式、“弦化切”即可得出.

解答 解:${cos^2}({α+\frac{π}{4}})-{cos^2}({α-\frac{π}{4}})$=$co{s}^{2}(\frac{π}{4}+α)$-$si{n}^{2}(\frac{π}{4}+α)$=$cos(2α+\frac{π}{2})$
=-sin2α=-$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=-$\frac{2tanα}{ta{n}^{2}α+1}$=-$\frac{2×3}{{3}^{2}+1}$=-$\frac{3}{5}$,
故選:A.

點(diǎn)評(píng) 本題考查了誘導(dǎo)公式、倍角公式、“弦化切”、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≤0}\\{2x+y-a≥0}\\{y-2≤0}\end{array}\right.$,若目標(biāo)函數(shù)z=x-2y的最大值是-2,則實(shí)數(shù)a=(  )
A.-6B.-1C.1D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的上、下頂點(diǎn)分別為A1、A2,點(diǎn)P在C上且直線PA2斜率的取值范圍是[-2,-1],那么直線PA1斜率的取值范圍是[$\frac{3}{8},\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人民幣儲(chǔ)蓄存款(年底余額)如下表:
年份20112012201320142015
時(shí)間代號(hào)t12345
儲(chǔ)蓄存款y(千億元)567810
(1)求y關(guān)于t的回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$
(2)用所求回歸方程預(yù)測(cè)該地區(qū)2016年(t=6)的人民幣儲(chǔ)蓄存款.
附:回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$中,
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={3,a2},B={2,1-a,b},且A∩B={1},則A∪B=( 。
A.{0,1,3}B.{1,2,3}C.{1,2,4}D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,底面是邊長為2的正三角形,倒棱AA1⊥平面ABC,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),且EC=2FB=2.
(Ⅰ)若點(diǎn)M是線段AC的中點(diǎn),證明:
(1)MB∥平面AEF;
(2)平面AEF⊥平面ACC1A1
(Ⅱ)求三棱錐B-AEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若G是△ABC的重心,且滿足$\overrightarrow{GA}+\overrightarrow{GB}=λ\overrightarrow{GC}$,則λ=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|x2<4},B={x∈Z|-3≤x<1},則A∩B=( 。
A.{-2,-1,0}B.(-1,0)C.{-1,0}D.(-3,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知在Rt△AOB中,AO=1,BO=2,如圖,動(dòng)點(diǎn)P是在以O(shè)點(diǎn)為圓心,OB為半徑的扇形內(nèi)運(yùn)動(dòng)(含邊界)且∠BOC=90°;設(shè)$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}$,則x+y的取值范圍[-2,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案