與圓C1x2+y2+2x-6y-26=0,C2x2+y2-4x+2y+4=0都相切的直線(xiàn)有( 。
分析:把圓的方程化為標(biāo)準(zhǔn)形式,求得圓心和半徑,再根據(jù)兩個(gè)圓的圓心距正好等于半徑之差,可得兩個(gè)圓相內(nèi)切,從而得出結(jié)論.
解答:解:圓C1 即 (x+1)2+(y-3)2=36,表示以C1(-1,3)為圓心,半徑等于6的圓.
 C2 (x-2)2+(y+1)2=1,表示以C2(2,-1)為圓心,半徑等于1的圓.
顯然,|C1C2|=
32+(-4)2
=5,正好等于半徑之差,故兩個(gè)圓相內(nèi)切,
故和兩個(gè)圓都相切的直線(xiàn)只有一條,
故選A.
點(diǎn)評(píng):本題主要考查圓的標(biāo)準(zhǔn)方程,圓和圓的位置關(guān)系的判定方法,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}與圓C1:x2+y2-2anx+2an+1y-1=0和圓C2:x2+y2+2x+2y-2=0,若圓C1與圓C2交于A,B兩點(diǎn)且這兩點(diǎn)平分圓C2的周長(zhǎng).
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)若a1=-3,則當(dāng)圓C1的半徑最小時(shí),求出圓C1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線(xiàn)3x+4y-5=0與圓C1:x2+y2=4交于A,B兩點(diǎn),若圓C2的圓心在線(xiàn)段AB上,且圓C2與圓C1相切,切點(diǎn)在圓C1的劣弧
AB
上,則圓C2的半徑的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)點(diǎn)(0,6)且與圓c1:x2+y2+10x+10y=0切于原點(diǎn)的圓c2,設(shè)圓c1的圓心為點(diǎn)o1,圓c2的圓心為o2
(1)把圓c1:x2+y2+10x+10y=0化為圓的標(biāo)準(zhǔn)方程;
(2)求圓c2的標(biāo)準(zhǔn)方程;
(3)點(diǎn)o2到圓c1上的最大的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓C2經(jīng)過(guò)點(diǎn)M(3,2),且與圓C1x2+y2+2x-6y+5=0相切于點(diǎn)N(1,2),則圓C2的圓心坐標(biāo)為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案