如圖所示,四棱錐P-ABCD中,AB∥CD,CD=2AB,M為PC的中點(diǎn).求證:BM∥平面PAD.
考點(diǎn):直線與平面平行的判定
專題:空間位置關(guān)系與距離
分析:取PD中點(diǎn)N,連結(jié)MN,AN,由已知條件推導(dǎo)出四邊形ABMN是平行四邊形,由此能證明BM∥平面PAD.
解答: 證明:取PD中點(diǎn)N,連結(jié)MN,AN,
∵四棱錐P-ABCD中,AB∥CD,CD=2AB,M為PC的中點(diǎn),
∴MN
.
AB,
∴四邊形ABMN是平行四邊形,
∴BM∥AN,
∵AN?平面PAD,BM?平面PAD,
∴BM∥平面PAD.
點(diǎn)評:本題考查直線與平面平行的證明,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC中,AB=BC=2,AB⊥BC,PA⊥底面ABC,且PA=2,則此三棱錐外接球的半徑為( 。
A、
2
B、
3
C、2
D、
21
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=ax與y=-
b
x
在區(qū)間(0,+∞)上都是減函數(shù),試確定函數(shù)y=ax3+bx2+5的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù).乙組記錄中有一個(gè)數(shù)據(jù)模糊,無法確認(rèn),在圖中以X表示.
(1)如果X=8,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差;
(2)如果X=9,求乙組同學(xué)植樹棵數(shù)的中位數(shù)和眾數(shù);
(3)如果X=9,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)Y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
lnx
x
的圖象為曲線C,函數(shù)g(x)=
1
2
ax+b的圖象為直線l.
(1)求y=f(x)在x=e處的切線方程;
(2)當(dāng)a=2,b=-3時(shí),求F(x)=f(x)-g(x)的最大值;
(3)設(shè)直線l與曲線C的交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1≠x2,求證:(x1+x2)g(x1+x2)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某鹽場有甲、乙兩套設(shè)備包裝食鹽,在自動(dòng)包裝傳送帶上,每隔3分鐘抽一包稱其重量是否合格,分別記錄數(shù)據(jù)如下:
甲套設(shè)備:504,510,505,490,485,485,515,510,496,500;
乙套設(shè)備:496,502,501,499,505,498,499,498,497,505.
(1)試確定這是何種抽樣方法?
(2)比較甲、乙兩套設(shè)備的平均值與方差,說明哪套包裝設(shè)備誤差較少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx.
(Ⅰ)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求正實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a>0時(shí),討論f(x)在(
1
2
,  2)
的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求過點(diǎn)P(1,2)且在兩坐標(biāo)軸上的截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)解不等式|x-3|+|x-4|<3;
(2)如果關(guān)于x的不等式|x-3|+|x-4|<a的解集不是空集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案